Oscillations localisées sur les diviseurs

Type: Article

Publication Date: 2012-03-05

Citations: 11

DOI: https://doi.org/10.1112/jlms/jdr058

Abstract

Let f be a real arithmetic function and △ ( n , f ) : = sup u ∈ R , 0 ⩽ v ⩽ 1 , | ∑ d | n e u < d ⩽ e u + v f ( d ) | denote the corresponding generalization of Hooley's Delta-function. We investigate weighted moments of Δ(n; f) for oscillating functions f, typical cases being those of a non principal Dirichlet character or of the Möbius function. We obtain, in particular, sharp bounds up to factors (log x)o(1) for all weighted finite integral, even moments computed on the integers not exceeding x. This is the key step to the proof, given in a subsequent work, of Manin's conjecture, in the strong form conjectured by Peyre and with an effective remainder term, for all Châtelet surfaces. The proof of the main results rest upon a genuinely new approach for Hooley-type functions.

Locations

  • Journal of the London Mathematical Society - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Moments de la fonction Delta de Hooley associ\'ee \`a un caract\`ere 2020 Alexandre Lartaux
+ Non-real Poles and Irregularity of Distribution 2019 David Lowry-Duda
+ Non-real Poles and Irregularity of Distribution 2019 David Lowry-Duda
+ Non-real poles and irregularity of distribution 2020 David Lowry-Duda
+ p-Adic oscillatory integrals and Newton polyhedra 2004 Zúñiga Galindo
+ PDF Chat Moments of Oscillations and Ruled Sums 1972 Howard H. Stratton
+ PDF Chat Some multidimensional integrals in number theory and connections with the Painlevé V equation 2018 Estelle Basor
Fan Ge
Michael Rubinstein
+ Traces of oscillating functions 1999 Jean -Marie Aubry
+ PDF Chat The second moment of sums of coefficients of cusp forms 2016 Thomas A. Hulse
Chan Ieong Kuan
David Lowry-Duda
Alexander Walker
+ PDF Chat Dirichlet-finite functions and harmonic majorants 1981 Shinji Yamashita
+ On the regularity of fractional integrals of modular forms 2017 Carlos Pastor
+ A $p$-arton Model for Modular Cusp Forms 2021 Parikshit Dutta
Debashis Ghoshal
+ Oscillatory integrals 1996 Yu. Safarov
Dmitri Vassiliev
+ Measure Theoretic Aspects of Oscillations of Error Terms 2015 Kamalakshya Mahatab
Anirban Mukhopadhyay
+ Hölder regularity of arithmetic Fourier series arising from modular forms 2013 Izabela Petrykiewicz
+ PDF Chat Sums of Fourier coefficients involving theta series and Dirichlet characters 2024 Yanxue Yu
+ PDF Chat Moments and oscillations of exponential sums related to cusp forms 2016 Esa V. Vesalainen
+ Damped Oscillatory Integrals and Maximal Operators 2005 Isroil A. Ikromov
+ PDF Chat A $$p$$-arton model for modular cusp forms 2021 Pradip Kumar Dutta
Debashis Ghoshal
+ On the regularity of fractional integrals of modular forms 2016 Carlos Pastor