2+1 gravity and doubly special relativity

Type: Article

Publication Date: 2004-02-06

Citations: 139

DOI: https://doi.org/10.1103/physrevd.69.044001

Abstract

It is shown that gravity in 2+1 dimensions coupled to point particles provides a nontrivial example of Doubly Special Relativity (DSR). This result is obtained by interpretation of previous results in the field and by exhibiting an explicit transformation between the phase space algebra for one particle in 2+1 gravity found by Matschull and Welling and the corresponding DSR algebra. The identification of 2+1 gravity as a $DSR$ system answers a number of questions concerning the latter, and resolves the ambiguity of the basis of the algebra of observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra high energy particle kinematics in 3+1 dimensions is described by some DSR theory.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Doubly Special Relativity: facts and prospects 2006 Jerzy Kowalski-Glikman
+ Doubly Special Relativity and quantum gravity phenomenology 2003 Jerzy Kowalski-Glikman
+ Doubly Special Relativity and quantum gravity phenomenology 2003 Jerzy Kowalski-Glikman
+ Doubly Special Relativity: A Kinematics of Quantum Gravity? 2002 Jerzy Kowalski-Glikman
+ Doubly special relativity: A Kinematics of quantum gravity? 2002 Jerzy Kowalski-Glikman
+ PDF Chat Doubly Quantum Mechanics 2024 Vittorio D’Esposito
Giuseppe Fabiano
Domenico Frattulillo
Flavio Mercati
+ DOUBLY SPECIAL RELATIVITY AND QUANTUM GRAVITY PHENOMENOLOGY 2006 Jerzy Kowalski-Glikman
+ PDF Chat Gauged duality, conformal symmetry, and spacetime with two times 1998 Itzhak Bars
Cemsinan Deliduman
Oleg Andreev
+ Doubly Special Relativity as a Limit of Gravity 2006 K. ImiƂkowska
Jerzy Kowalski-Glikman
+ Doubly special relativity and translation invariance 2009 S. Mignemi
+ PDF Chat CANONICAL REALIZATIONS OF DOUBLY SPECIAL RELATIVITY 2007 Pablo GalĂĄn
Guillermo A. Mena MarugĂĄn
+ PDF Chat Phase spaces of doubly special relativity 2004 Arkadiusz BƂaut
Marcin Daszkiewicz
Jerzy Kowalski-Glikman
S. Nowak
+ PDF Chat Remarks on doubly special relativity theories and gravity 2008 Franz Hinterleitner
+ PDF Chat SOME ENCOURAGING AND SOME CAUTIONARY REMARKS ON DOUBLY SPECIAL RELATIVITY IN QUANTUM GRAVITY 2006 Giovanni Amelino‐Camelia
+ Doubly Special Relativity and $\kappa $-Minkowski Non-Commutative Spacetime: Towards a Dynamical Connection 2006 Subir Ghosh
+ PDF Chat Doubly special relativity in de Sitter spacetime 2010 S. Mignemi
+ PDF Chat Doubly special relativity as a non-local quantum field theory 2024 J. J. Relancio
LucĂ­a SantamarĂ­a-Sanz
+ PDF Chat Doubly special relativity and canonical transformations: Comment on “Lagrangian for doubly special relativity particle and the role of noncommutativity” 2007 J. Antonio Garcı́a
+ DOUBLY SPECIAL RELATIVITY AND TRANSLATION INVARIANCE 2012 S. Mignemi
+ $$1+1$$-Dimensional dS (dS$$_2$$) Relativity: The Classical Context 2024 Mohammad Enayati
Jean‐Pierre Gazeau
Hamed Pejhan
Anzhong Wang

Works That Cite This (124)

Action Title Year Authors
+ PDF Chat Symmetries of quantum spacetime in three dimensions 2016 Francesco Cianfrani
Jerzy Kowalski-Glikman
Daniele Pranzetti
Giacomo Rosati
+ PDF Chat Minimal Length Scale Scenarios for Quantum Gravity 2013 Sabine Hossenfelder
+ PDF Chat Hamilton geometry: Phase space geometry from modified dispersion relations 2015 Leonardo Barcaroli
Lukas K. Brunkhorst
Giulia Gubitosi
NiccolĂł Loret
Christian Pfeifer
+ PDF Chat The covariant and on-shell statistics in Îș-deformed space-time 2009 Rong-Xin Miao
+ The Îș-(A)dS quantum algebra in (3 + 1) dimensions 2017 Ángel Ballesteros
Francisco J. Herranz
Fabio Musso
Pedro Naranjo
+ PDF Chat DSR as an explanation of cosmological structure 2008 JoĂŁo Magueijo
+ PDF Chat Noncommutative Geometries and Gravity 2008 Folkert MĂŒller-Hoissen
Alfredo Macı́as
ClĂĄus LĂ€mmerzahl
Abel Camacho
+ PDF Chat Universal Îș-PoincarĂ© covariant differential calculus over Îș-Minkowski space 2014 Tajron Jurić
Stjepan Meljanac
Rina Ć trajn
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Îș</mml:mi></mml:math> –de Sitter and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Îș</mml:mi></mml:math> -PoincarĂ© symmetries emerging from Chern-Simons <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mo stretchy="false">)</mml:mo
 2017 Giacomo Rosati
+ PDF Chat Snyder momentum space in relative locality 2014 Andrzej Banburski
Laurent Freidel