Type: Article
Publication Date: 2007-11-09
Citations: 11
DOI: https://doi.org/10.1103/physrevlett.99.191805
Using data collected near the ${D}_{s}^{*+}{D}_{s}^{\ensuremath{-}}$ peak production energy ${E}_{\mathrm{cm}}=4170\text{ }\text{ }\mathrm{MeV}$ by the CLEO-c detector, we study the decays of ${D}_{s}^{+}$ mesons to two pseudoscalar mesons. We report on searches for the singly Cabibbo-suppressed ${D}_{s}^{+}$ decay modes ${K}^{+}\ensuremath{\eta}$, ${K}^{+}{\ensuremath{\eta}}^{\ensuremath{'}}$, ${\ensuremath{\pi}}^{+}{K}_{S}^{0}$, ${K}^{+}{\ensuremath{\pi}}^{0}$, and the isospin-forbidden decay mode ${D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$. We normalize with respect to the Cabibbo-favored ${D}_{s}^{+}$ modes ${\ensuremath{\pi}}^{+}\ensuremath{\eta}$, ${\ensuremath{\pi}}^{+}{\ensuremath{\eta}}^{\ensuremath{'}}$, and ${K}^{+}{K}_{S}^{0}$, and obtain ratios of branching fractions: $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}\ensuremath{\eta})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}\ensuremath{\eta})=(8.9\ifmmode\pm\else\textpm\fi{}1.5\ifmmode\pm\else\textpm\fi{}0.4)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\eta}}^{\ensuremath{'}})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\eta}}^{\ensuremath{'}})=(4.2\ifmmode\pm\else\textpm\fi{}1.3\ifmmode\pm\else\textpm\fi{}0.3)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{K}_{S}^{0})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{K}_{S}^{0})=(8.2\ifmmode\pm\else\textpm\fi{}0.9\ifmmode\pm\else\textpm\fi{}0.2)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\pi}}^{0})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{K}_{S}^{0})=(5.5\ifmmode\pm\else\textpm\fi{}1.3\ifmmode\pm\else\textpm\fi{}0.7)%$, and $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{K}_{S}^{0})<4.1%$ at 90% C.L., where the uncertainties are statistical and systematic, respectively.