Ask a Question

Prefer a chat interface with context about you and your work?

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msubsup><mml:mi>D</mml:mi><mml:mi>s</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:math>exclusive hadronic decays involving<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ω</mml:mi></mml:math>

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msubsup><mml:mi>D</mml:mi><mml:mi>s</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:math>exclusive hadronic decays involving<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ω</mml:mi></mml:math>

Using data collected near the ${D}_{s}^{*\ifmmode\pm\else\textpm\fi{}}{D}_{s}^{\ensuremath{\mp}}$ peak production energy ${E}_{\mathrm{cm}}=4170\text{ }\text{ }\mathrm{MeV}$ by the CLEO-c detector, we search for ${D}_{s}^{+}$ exclusive hadronic decays involving $\ensuremath{\omega}$. We find $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}\ensuremath{\omega})=(0.21\ifmmode\pm\else\textpm\fi{}0.09\ifmmode\pm\else\textpm\fi{}0.01)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}\ensuremath{\omega})=(2.78\ifmmode\pm\else\textpm\fi{}0.65\ifmmode\pm\else\textpm\fi{}0.25)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\omega})=(1.58\ifmmode\pm\else\textpm\fi{}0.45\ifmmode\pm\else\textpm\fi{}0.09)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}\ensuremath{\eta}\ensuremath{\omega})=(0.85\ifmmode\pm\else\textpm\fi{}0.54\ifmmode\pm\else\textpm\fi{}0.06)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}\ensuremath{\omega})&lt;0.24%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\pi}}^{0}\ensuremath{\omega})&lt;0.82%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\omega})&lt;0.54%$, and $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}\ensuremath{\eta}\ensuremath{\omega})&lt;0.79%$. The upper limits are at 90% confidence level.