Learning Probability Measures with respect to Optimal Transport Metrics

Type: Preprint

Publication Date: 2012-01-01

Citations: 24

DOI: https://doi.org/10.48550/arxiv.1209.1077

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Learning Probability Measures with respect to Optimal Transport Metrics 2012 Guillermo D. Cañas
Lorenzo Rosasco
+ Measure estimation on manifolds: an optimal transport approach 2021 Vincent Divol
+ PDF Chat Measure estimation on manifolds: an optimal transport approach 2022 Vincent Divol
+ Linearized optimal transport on manifolds 2023 Clément Sarrazin
Bernhard Schmitzer
+ Empirical Optimal Transport between Different Measures Adapts to Lower Complexity 2022 Shayan Hundrieser
Thomas Staudt
Axel Munk
+ PDF Chat Integral Probability Metric based Regularization for Optimal Transport 2020 Piyushi Manupriya
J. Saketha Nath
Pratik Jawanpuria
+ Empirical Optimal Transport under Estimated Costs: Distributional Limits and Statistical Applications 2023 Shayan Hundrieser
Gilles Mordant
Christoph Alexander Weitkamp
Axel Munk
+ PDF Chat Reconstructing measures on manifolds: an optimal transport approach 2021 Vincent Divol
+ On The Chain Rule Optimal Transport Distance 2018 Frank Nielsen
Ke Sun
+ PDF Chat When optimal transport meets information geometry 2022 Gabriel Khan
Jun Zhang
+ Minimum intrinsic dimension scaling for entropic optimal transport 2023 Austin J. Stromme
+ An Optimal Transport View on Generalization 2018 Jingwei Zhang
Tongliang Liu
Dacheng Tao
+ Optimal transport and information geometry 2019 Ting‐Kam Leonard Wong
Jiaowen Yang
+ Leveraging Optimal Transport via Projections on Subspaces for Machine Learning Applications 2023 Clément Bonet
+ Efficient estimates of optimal transport via low-dimensional embeddings 2021 Patric Fulop
Vincent Danos
+ Gaussian-Smooth Optimal Transport: Metric Structure and Statistical Efficiency 2020 Ziv Goldfeld
Kristjan Greenewald
+ Optimal Mass Transport for Problems in Control, Statistical Estimation, and Image Analysis 2012 Emmanuel Tannenbaum
Tryphon T. Georgiou
Allen Tannenbaum
+ Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space 2019 Quentin MĂ©rigot
Alex Delalande
Frédéric Chazal
+ PDF Chat Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space 2020 Quentin MĂ©rigot
Alex Delalande
Frédéric Chazal
+ Gaussian mixtures closest to a given measure via optimal transport 2024 Jean B. Lasserre