On the prime factors of (²ⁿ_{𝑛})

Type: Article

Publication Date: 1975-01-01

Citations: 20

DOI: https://doi.org/10.1090/s0025-5718-1975-0369288-3

Abstract

Several quantitative results are given expressing the fact that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis Subscript n Baseline Superscript 2 n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(_n^{2n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is usually divisible by a high power of the small primes. On the other hand, it is shown that for any two primes <italic>p</italic> and <italic>q</italic>, there exist infinitely many <italic>n</italic> for which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis left-parenthesis Subscript n Baseline Superscript 2 n Baseline right-parenthesis comma p q right-parenthesis equals 1"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mi>q</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">((_n^{2n}),pq) = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On primes 𝑝 with 𝜎(𝑝^{𝛼})=𝑚² 1987 J. Chidambaraswamy
P. V. Krishnaiah
+ On the numbers 𝑛 relatively prime to Ω(𝑛)-𝜔(𝑛) 2022 Yuchen Ding
+ On the greatest prime factor of (𝑎𝑏+1)(𝑎𝑐+1) 2002 Pietro Corvaja
Umberto Zannier
+ PDF Chat Some prime numbers of the forms 2𝐴3ⁿ+1 and 2𝐴3ⁿ-1 1972 Hywel C Williams
C. R. Zarnke
+ On a problem of Chen and Liu concerning the prime power factorization of 𝑛! 2013 Johannes F. Morgenbesser
Thomas Stoll
+ PDF Chat On the gap distribution of prime factors 2023 Régis de la Bretèche
Gérald Tenenbaum
+ PDF Chat On 𝑘-free integers with small prime factors 1975 D. G. Hazlewood
+ PDF Chat The number of primes is finite 1999 Miodrag Živković
+ PDF Chat A new function associated with the prime factors of (ⁿ_{𝑘}) 1974 Earl F. Ecklund
P. Erdős
J. L. Selfridge
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ PDF Chat Primes of the form 𝑛!±1 and 2⋅3⋅5⋯𝑝±1 1982 Joe Buhler
Richard E. Crandall
M. A. Penk
+ PDF Chat On integers free of large prime factors 1986 Adolf Hildebrand
Gérald Tenenbaum
+ PDF Chat New primes of the form 𝑘⋅2ⁿ+1 1979 Robert Baillie
+ PDF Chat Largest known twin primes and Sophie Germain primes 1999 Karl‐Heinz Indlekofer
Antal A. Járai
+ PDF Chat Some very large primes of the form 𝑘⋅2^{𝑚}+1 1980 Gordon V. Cormack
Hywel C Williams
+ Primes of the form <mml:math> <mml:mrow> <mml:mo form="prefix">[</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>c</mml:mi> </mml:msup> <mml:mo form="postfix">]</mml:mo> </mml:mrow> </mml:math> with square-free <mml:math> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> 2024 Stoyan Dimitrov
+ PDF Chat Primes differing by a fixed integer 1981 W. G. Leavitt
Albert A. Mullin
+ PDF Chat An upper bound for the sum of large differences between prime numbers 1981 Roger Cook
+ PDF Chat Some primes of the form (𝑎ⁿ-1)/(𝑎-1) 1979 Hywel C Williams
E. Seah
+ Primes of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mi>n</mml:mi><mml:msup><mml:mi>y</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> with conditions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>x</mml:mi><mml:mo>≡</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.25em" /><mml:mi mathvariant="normal">mod</… 2009 Bumkyu Cho

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat On Some Divisibility Properties of 1964 P. Erdős