On geometric transfer in real twisted endoscopy

Type: Article

Publication Date: 2012-10-12

Citations: 24

DOI: https://doi.org/10.4007/annals.2012.176.3.9

Abstract

We prove the existence of a transfer of orbital integrals in endoscopy for real reductive groups when there is twisting by an automorphism defined over the reals and by a character on the real points of the group.Our proof contains a relatively short self-contained argument for the already known case of standard endoscopy.

Locations

  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ TWISTED ENDOSCOPY FOR REAL GROUPS 2003 David Renard
+ TEMPERED SPECTRAL TRANSFER IN THE TWISTED ENDOSCOPY OF REAL GROUPS 2014 Paul Mezo
+ Endoscopy for real reductive groups 2011 David Renard
+ Character identities in the twisted endoscopy of real reductive groups 2012 Paul Mezo
+ PDF Chat Orbital integrals and a family of groups attached to a real reductive group 1979 D. Shelstad
+ PDF Chat On elliptic factors in real endoscopic transfer I 2015 D. Shelstad
+ PDF Chat Real representations of groups with a single involution 1977 I. M. Isaacs
+ Transfert d'intégrales orbitales pour le groupe métaplectique 2009 Wen-Wei Li
+ The method of adjoint orbits for real reductive groups 2000 David A. Vogan
+ On elliptic factors in real endoscopic transfer I 2014 D. Shelstad
+ PDF Chat Transfert d’intégrales orbitales pour le groupe métaplectique 2010 Wen-Wei Li
+ Deconstruction of Real-Linear Surjective Isometries Over Complex Vector Spaces 2017 John Michael Sawatzky
+ Lifting of Characters for Nonlinear Simply Laced Groups 2008 Jeffrey Adams
Rebecca A. Herb
+ Twisted Real quasi-elliptic cohomology 2022 Zhen Huan
Matthew B. Young
+ PDF Chat On endoscopic transfer of Deligne–Lusztig functions 2012 David Kazhdan
Yakov Varshavsky
+ PDF Chat Donn\'ees endoscopiques d'un groupe r\'eductif connexe: applications d'une construction de Langlands 2020 Bertrand Lemaire
Jean-Loup Waldspurger
+ Real Isometry Groups 2018 Norman W. Johnson
+ Tempered endoscopy for real groups III: Inversion of transfer and 𝐿-packet structure 2008 D. Shelstad
+ PDF Chat COCENTERS OF -ADIC GROUPS, I: NEWTON DECOMPOSITION 2018 Xuhua He
+ PDF Chat On representations of real Jacobi groups 2011 Binyong Sun