Empirical likelihood ratio confidence intervals for a single functional

Type: Article

Publication Date: 1988-01-01

Citations: 1930

DOI: https://doi.org/10.1093/biomet/75.2.237

Locations

Similar Works

Action Title Year Authors
+ Empirical Distribution Functions 2011 Anders Källén
+ PDF Chat Calculating Confidence Intervals for Continuous and Discontinuous Functions of Estimated Parameters 2011 John C. Ham
Tiemen Woutersen
+ Calculating Confidence Intervals for Continuous and Discontinuous Functions of Estimated Parameters 2011 John C. Ham
Tiemen Woutersen
+ Estimating Distribution Functions 2007 Paul H. Kvam
Brani Vidaković
+ Methods Based on the Empirical Distribution Function 2010 Olivier Thas
+ Functional Two-sample Tests Based on Empirical Characteristic Functionals 2020 Zdeněk Hlávka
Daniel Hlubinka
+ Likelihood-Based Statistical Intervals 2017 William Q. Meeker
Gerald J. Hahn
Luis A. Escobar
+ Nonparametric density and regression estimation for functional data 2005 Paulo Eduardo Oliveira
+ Continuous Density and Cumulative Distribution Functions 2018 Jeffrey S. Racine
+ Functional ANOVA based on empirical characteristic functionals 2021 Zdeněk Hlávka
Daniel Hlubinka
Kateřina Koňasová
+ Confidence intervals for the current status model 2016 Piet Groeneboom
Kim Hendrickx
+ 19 Empirical distribution function 1984 Endre Csáki
+ Parametric Density Estimation for a Single Continuous Variable 2018 Kevin J. Keen
+ Parametric Density Estimation for a Single Continuous Variable 2010
+ PDF Chat Empirical likelihood confidence intervals for nonparametric functional data analysis 2012 Heng Lian
+ Probability Density Functions 2019 Therese M. Donovan
Ruth M. Mickey
+ PDF Chat Simultaneous confidence bands for the mean of functional data 2017 David Degras
+ Empirical Likelihood Confidence Intervals for Nonparametric Functional Data Analysis 2009 Heng Lian
+ PDF Chat A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the Data Being Tested 2019 Lorentz Jäntschi
+ Estimating Distribution Functions 2022 Paul H. Kvam
Brani Vidaković
Seong-joon Kim