Effective field theories for topological insulators by functional bosonization

Type: Article

Publication Date: 2013-02-25

Citations: 58

DOI: https://doi.org/10.1103/physrevb.87.085132

Abstract

Effective field theories that describe the dynamics of a conserved U(1) current in terms of ``hydrodynamic'' degrees of freedom of topological phases in condensed matter are discussed in general dimension $D=d+1$ using the functional bosonization technique. For noninteracting topological insulators (superconductors) with a conserved U(1) charge and characterized by an integer topological invariant [more specifically, they are topological insulators in the complex symmetry classes (class A and AIII), and in the ``primary series'' of topological insulators, in the eight real symmetry classes], we derive the BF-type topological field theories supplemented with the Chern-Simons (when $D$ is odd) or the $\ensuremath{\theta}$ (when $D$ is even) terms. For topological insulators characterized by a ${\mathbb{Z}}_{2}$ topological invariant (the first and second descendants of the primary series), their topological field theories are obtained by dimensional reduction. Building on this effective field theory description for noninteracting topological phases, we also discuss, following the spirit of the parton construction of the fractional quantum Hall effect by Block and Wen, the putative ``fractional'' topological insulators and their possible effective field theories, and use them to determine the physical properties of these nontrivial quantum phases.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Effective hydrodynamic field theory and condensation picture of topological insulators 2016 AtMa P. O. Chan
Thomas Klein Kvorning
Shinsei Ryu
Eduardo Fradkin
+ PDF Chat Three-dimensional topological insulators and bosonization 2017 Andrea Cappelli
Enrico Randellini
Jacopo Sisti
+ PDF Chat Fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math> -duality, classification of fractional topological insulators, and surface topological order 2017 Peng Ye
Meng Cheng
Eduardo Fradkin
+ PDF Chat Bosonization of 2+1 dimensional fermions on the surface of topological insulators 2024 Andrea Cappelli
Lorenzo Maffi
Riccardo Villa
+ PDF Chat Functional bosonization of interacting fermions in arbitrary dimensions 1996 Peter Kopietz
K. Schönhammer
+ PDF Chat Topological superconductivity, topological confinement, and the vortex quantum Hall effect 2011 M. C. Diamantini
Carlo A. Trugenberger
+ Topological and Universal Aspects of Bosonized Interacting Fermionic Systems in (2+1)d 1998 Daniel G. Barci
L. E. Oxman
S. P. Sorella
+ PDF Chat Surfaces and slabs of fractional topological insulator heterostructures 2017 Sharmistha Sahoo
Alexander Sirota
Gil Young Cho
Jeffrey C. Y. Teo
+ PDF Chat Charge and spin fractionalization in strongly correlated topological insulators 2012 Predrag Nikolić
+ PDF Chat Topological quantum field theory of three-dimensional bosonic Abelian-symmetry-protected topological phases 2016 Peng Ye
Zheng‐Cheng Gu
+ Topological Current in Fractional Chern Insulators 2015 Tohru Koma
+ Topological Current in Fractional Chern Insulators 2015 Tohru Koma
+ PDF Chat Topological and universal aspects of bosonized interacting fermionic systems in 2+1 dimensions 1999 Daniel G. Barci
L. E. Oxman
Sandro Sorella
+ PDF Chat Fractionalizing global symmetry on looplike topological excitations 2022 Shang-Qiang Ning
Zheng-Xin Liu
Peng Ye
+ PDF Chat Interacting and fractional topological insulators via the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>chiral anomaly 2014 Maciej Koch-Janusz
Zohar Ringel
+ Higgsless superconductivity from topological defects in compact BF terms 2014 M. C. Diamantini
Carlo A. Trugenberger
+ PDF Chat Bosonic model with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>fractionalization 2003 Olexei I. Motrunich
+ PDF Chat Classification and analysis of two-dimensional Abelian fractional topological insulators 2012 Michael Levin
Ady Stern
+ PDF Chat Symmetry-protected fractional Chern insulators and fractional topological insulators 2012 Yuan-Ming Lu
Ying Ran
+ Composite Particle Theory, Fractional Axion Angles, and Extrinsic Twist Defects in Three-Dimensional Gapped Fermionic Phases 2016 Peng Ye
Taylor L. Hughes
Joseph Maciejko
Eduardo Fradkin

Works That Cite This (51)

Action Title Year Authors
+ PDF Chat Wilson operator algebras and ground states of coupled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="italic">BF</mml:mi></mml:math> theories 2017 Apoorv Tiwari
Xiao Chen
Shinsei Ryu
+ PDF Chat Nematic quantum phase transition of composite Fermi liquids in half-filled Landau levels and their geometric response 2016 Yizhi You
Gil Young Cho
Eduardo Fradkin
+ PDF Chat Loop models, modular invariance, and three-dimensional bosonization 2018 Hart Goldman
Eduardo Fradkin
+ PDF Chat Topological order, symmetry, and Hall response of two-dimensional spin-singlet superconductors 2017 Sergej Moroz
Abhinav Prem
Victor Gurarie
Leo Radzihovsky
+ PDF Chat Dynamical Axions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> Quantum Spin Liquids 2023 Salvatore D. Pace
Claudio Castelnovo
Chris R. Laumann
+ PDF Chat Bosonic analog of a topological Dirac semimetal: Effective theory, neighboring phases, and wire construction 2016 Matthew F. Lapa
Gil Young Cho
Taylor L. Hughes
+ PDF Chat Fermionic dualities with axial gauge fields 2020 Adolfo G. Grushin
Giandomenico Palumbo
+ PDF Chat Higher angular momentum band inversions in two dimensions 2018 Jörn W. F. Venderbos
Yichen Hu
C. L. Kane
+ PDF Chat Bulk-boundary correspondence in (3+1)-dimensional topological phases 2016 Xiao Chen
Apoorv Tiwari
Shinsei Ryu
+ PDF Chat Discretized Abelian Chern-Simons gauge theory on arbitrary graphs 2015 Kai Sun
Krishna Kumar
Eduardo Fradkin