On a maximal function on compact Lie groups

Type: Article

Publication Date: 1989-01-01

Citations: 2

DOI: https://doi.org/10.1090/s0002-9947-1989-0958889-3

Abstract

Suppose that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a compact Lie group with finite centre. For each positive number <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A d left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Ad</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {Ad}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant probability measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu Subscript s"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mu _s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> carried on the conjugacy class of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="exp left-parenthesis s upper H Subscript rho Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\exp (s{H_\rho })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This one-parameter family of measures is used to define a maximal function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M f"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mspace width="thinmathspace" /> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {M}\,f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for each continuous function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our theorem states that there is an index <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{p_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 1 comma 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(1,2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, depending on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, such that the maximal operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is bounded on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is greater than <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{p_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When the rank of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is greater than one, this provides an example of a controllable maximal operator coming from averages over a family of submanifolds, each of codimension greater than one.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Compact Lie groups which act on Euclidean space without fixed points 1976 Allan L. Edmonds
Ronnie Lee
+ PDF Chat The Haar measure on a compact quantum group 1995 Alfons Van Daele
+ West’s problem on equivariant hyperspaces and Banach-Mazur compacta 2003 Sergey A. Antonyan
+ PDF Chat Transitive actions on highly connected spaces 1973 Victor Schneider
+ PDF Chat Kaehler structures on 𝐾_{𝐂}/(𝐏,𝐏) 1997 Meng-Kiat Chuah
+ PDF Chat Lie groups that are closed at infinity 1989 Harry F. Hoke
+ PDF Chat A remark on Mahler’s compactness theorem 1971 David Mumford
+ PDF Chat Compact Lie group action and equivariant bordism 1984 S. S. Khare
+ PDF Chat Some model theory of compact Lie groups 1991 Ali Nesin
Anand Pillay
+ PDF Chat Compact group actions and maps into 𝐾(𝜋,1)-spaces 1985 Daniel Henry Gottlieb
Kyung B. Lee
Murad Özaydın
+ PDF Chat Continuous functions on compact groups 1997 David P. Blecher
+ PDF Chat The equivariant Hurewicz map 1992 L Lewis
+ PDF Chat A split action associated with a compact transformation group 1981 Sol Schwartzman
+ PDF Chat Uniformly continuous functionals on the Fourier algebra of any locally compact group 1979 Anthony Lau
+ Strong multiplicity one theorems for locally homogeneous spaces of compact-type 2020 Emilio A. Lauret
Roberto J. Miatello
+ Asymptotic cycles for actions of Lie groups 2012 Sol Schwartzman
+ Generating sets for compact semisimple Lie groups 1999 Michael Field
+ A Giambelli formula for classical 𝐺/𝑃 spaces 2013 Harry Tamvakis
+ Surjectivity for Hamiltonian 𝐺-spaces in 𝐾-theory 2007 Megumi Harada
Gregory D. Landweber
+ Some Beurling–Fourier algebras on compact groups are operator algebras 2015 Mahya Ghandehari
Hun Hee Lee
Ebrahim Samei
Nico Spronk