A generalization of sets without long arithmetic progressions based on Szekeres algorithm

Type: Article

Publication Date: 2013-07-17

Citations: 1

DOI: https://doi.org/10.1016/j.jnt.2013.05.008

Locations

  • Journal of Number Theory - View

Similar Works

Action Title Year Authors
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ Long Arithmetic Progressions in Sets with Small Sumset 2009 Itziar BardajĂ­
David J. Grynkiewicz
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĂĄbor HegedĂŒs
+ PDF Chat Large subsets of $$\mathbb {Z}_m^n$$ without arithmetic progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĂĄbor HegedĂŒs
+ A note on maximal progression-free sets 2006 Svetoslav Savchev
Fang Chen
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ Greedy algorithm, arithmetic progressions, subset sums and divisibility 1999 Paul ErdƑs
Vsevolod F. Lev
GĂ©rard Rauzy
Csaba SĂĄndor
Andràs Sårközy
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ Sets of integers that do not contain long arithmetic progressions 2008 Kevin O’Bryant
+ Sets of integers that do not contain long arithmetic progressions 2008 Kevin O’Bryant
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ PDF Chat NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ Small subsets without $k$-term arithmetic progressions 2021 Rajko Nenadov
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Szemerédi's regularity lemma application on 3-term arithmetic progression 2020 Regina Ayunita Tarigan
Chun‐Yen Shen
+ Sumsets containing infinite arithmetic progressions 1988 Paul ErdƑs
Melvyn B. Nathanson
Andràs Sårközy
+ A Constructive Lower Bound on Szemerédi's Theorem 2017 Vladislav Taranchuk
+ New bounds for dimensions of a set uniformly avoiding multi-dimensional arithmetic progressions 2019 Kota Saito

Works That Cite This (1)

Action Title Year Authors
+ New Lower Bounds for van der Waerden Numbers Using Distributed Computing 2016 Daniel Monroe