Global well-posedness of Korteweg–de Vries equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>

Type: Article

Publication Date: 2009-01-29

Citations: 163

DOI: https://doi.org/10.1016/j.matpur.2009.01.012

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal de Mathématiques Pures et Appliquées - View

Similar Works

Action Title Year Authors
+ Global well-posedness for the modified korteweg-de vries equation 1999 German Fonsecal
Felipe Linares
Gustavo Ponce
+ Local well-posedness for the super Korteweg–de Vries equation 2007 Amauri da Silva Barros
+ Global well-posedness for the compressible Euler–Korteweg equations with damping in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" display="inline" id="d1e23"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.svg" display="inline" id="d1e33"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup… 2024 Jianzhong Zhang
Hongmei Cao
+ Globalwell-posedness and I method for the fifth order Korteweg-de Vries equation 2011 Wengu Chen
Zihua Guo
+ Global Well-Posedness for the One-Dimensional Euler–Fourier–Korteweg System 2024 Weixuan Shi
Jianzhong Zhang
+ PDF Chat Improved global well-posedness for the quartic Korteweg-de Vries equation 2024 Simão Correia
+ PDF Chat On local well-posedness and ill-posedness results for a coupled system of mkdv type equations 2020 Xavier Carvajal
Liliana Esquivel
Raphael Santos
+ Well-posedness and Control of the Korteweg-de Vries Equation on a Finite Domain 2015 Caicedo Caceres
Miguel V. Andrés
+ PDF Chat Global well-posedness for periodic generalized Korteweg-de Vries equation 2017 Yi Wu
+ Global well-posedness and scattering for the Dysthe equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2020 Răzvan Moşincat
Didier Pilod
Jean‐Claude Saut
+ PDF Chat Global Well-Posedness for $$H^{-1}(\mathbb {R})$$ Perturbations of KdV with Exotic Spatial Asymptotics 2022 Thierry Laurens
+ Global well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation 2008 Zihua Guo
Baoxiang Wang
+ On the regularity of solutions to the 𝑘-generalized Korteweg-de Vries equation 2016 Carlos E. Kenig
Felipe Linares
Gustavo Ponce
Luis Vega
+ Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Well-posedness and control of the Korteweg-de Vries equation on a bounded domain 2012 Lizhen Ji
Yat Sun Poon
Lo Yang
Shing‐Tung Yau
+ On the Absence of Global Solutions of the Korteweg–de Vries Equation 2013 Stanislav I. Pohožaev
+ Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation 2020 Giuseppe Maria Coclite
Lorenzo di Ruvo
+ PDF Chat Sharp well-posedness for the generalized KdV of order three on the half line 2019 E. Compaan
Nikolaos Tzirakis
+ Sharp well--posedness for the generalized KdV of order three on the half line 2019 E. Compaan
Nikolaos Tzirakis
+ Improved global well-posedness for the quartic Korteweg-de Vries equation 2023 Simão Correia