Improved global well-posedness for the quartic Korteweg-de Vries equation
Improved global well-posedness for the quartic Korteweg-de Vries equation
We prove that the quartic Korteweg-de Vries equation is globally well-posed for real-valued initial data in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript s Baseline left-parenthesis double-struck upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H^s(\mathbb {R})</mml:annotation> </mml:semantics> …