Solitary waves in a class of generalized Korteweg–de Vries equations

Type: Article

Publication Date: 1993-11-01

Citations: 81

DOI: https://doi.org/10.1103/physreve.48.4027

Abstract

We study the class of generalized Korteweg--de Vries (KdV) equations derivable from the Lagrangian: L(l,p) =F[1/2${\mathit{cphi}}_{\mathit{x}}$${\mathit{cphi}}_{\mathit{t}}$ -(${\mathit{cphi}}_{\mathit{x}}$${)}^{\mathit{l}}$/l(l-1) +\ensuremath{\alpha}(${\mathit{cphi}}_{\mathit{x}}$${)}^{\mathit{p}}$(${\mathit{cphi}}_{\mathit{x}\mathit{x}}$${)}^{2}$]dx, where the usual fields u(x,t) of the generalized KIdV equation are defined by u(x,t)=${\mathit{cphi}}_{\mathit{x}}$(x,t). This class contains compactons, which are solitary waves with compact support, and when l=p+2, these solutions have the feature that their width is independent of the amplitude. We consider the Hamiltonian structure and integrability properties of this class of KdV equations. We show that many of the properties of the solitary waves and compactons are easily obtained using a variational method based on the principle of least action. Using a class of trial variational functions of the form u(x,t)=A(t)exp[-\ensuremath{\beta}(t)\ensuremath{\Vert}x-q(t)${\mathrm{\ensuremath{\Vert}}}^{2\mathit{n}}$] we find solitonlike solutions for all n, moving with fixed shape and constant velocity, c. We show that the velocity, mass, and energy of the variational traveling-wave solutions are related by c=2${\mathit{rEM}}^{\mathrm{\ensuremath{-}}1}$, where r=(p+l+2)/(p+6-l), independent of n.

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat One-parameter family of soliton solutions with compact support in a class of generalized Korteweg–de Vries equations 1993 Avinash Khare
Fred Cooper
+ PDF Chat Compacton solutions in a class of generalized fifth-order Korteweg–de Vries equations 2001 Fred Cooper
James M. Hyman
Avinash Khare
+ Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations 2018 Jacek Jendrej
+ PDF Chat Large data wave operator for the generalized Korteweg-de Vries equations 2006 Raphaël Côte
+ Some General Results for Multi-dimensional Compactons in Generalized N-dimensional KdV Equations 2008 Fred Cooper
Avinash Khare
Avadh Saxena
+ PDF Chat Variational method for studying solitons in the Korteweg-de Vries equation 1993 Fred Cooper
Carlo Lucheroni
Harvey K. Shepard
Pasquale Sodano
+ Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^N$ with positive and zero mass 2017 Claudianor O. Alves
Olı́mpio H. Miyagaki
Alessio Pomponio
+ Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^N$ with positive and zero mass 2017 Claudianor O. Alves
Olı́mpio H. Miyagaki
Alessio Pomponio
+ PDF Chat Classical Solutions for the Generalized Korteweg-de Vries Equation 2023 Svetlin G. Georgiev
Aissa Boukarou
Zayd Hajjej
Khaled Zennir
+ The Korteweg-de Vries Equation (KdV-Equation) 1981 Gert Eilenberger
+ PDF Chat Dynamics of Solitary-waves in the Coupled Korteweg-De Vries Equations 2005 Woo-Pyo Hong
Jong-Jae Kim
+ Some General Results for Multi-dimensional Compactonsin Generalized N-dimensional KdV Equations 2006 Fred Cooper
Avinash Khare
Avadh Saxena
+ Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons 2021 Xavier Friederich
+ PDF Chat Exact elliptic compactons in generalized Korteweg–De Vries equations 2006 Fred Cooper
Avinash Khare
Avadh Saxena
+ PDF Chat Stability of the multi-solitons of the modified Korteweg-de Vries equation 2021 Stefan Le Coz
Zhong Wang
+ On solitons, compactons, and Lagrange maps 1996 Philip Rosenau
+ PDF Chat Compactons in % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBqj3BWbIqubWexLMBb50ujbqegm0B % 1jxALjharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr % Ffpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0F % irpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaa % GcbaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiuaacqWF % pepucqWFtepvaaa!46A4! $$ \mathcal{P}\mathcal{T} $$ -symmetric generalized Korteweg-de Vries equations 2009 Carl M. Bender
Fred Cooper
Avinash Khare
Bogdan Mihaila
Avadh Saxena
+ Large Time Asymptotics of Solutions Around Solitary Waves to the Generalized Korteweg--de Vries Equations 2001 Tetsu Mizumachi
+ Solitons of the modified KdV equation 1984 Harald Grosse
+ Non dispersive solutions of the generalized KdV equations are typically multi-solitons 2020 Xavier Friederich

Works That Cite This (68)

Action Title Year Authors
+ PDF Chat Peaked and Smooth Solitons for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>*</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn>4,1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>Equation 2013 Yongan Xie
Hualiang Fu
Shengqiang Tang
+ PDF Chat Solitons in the Camassa-Holm shallow water equation 1994 Fred Cooper
Harvey K. Shepard
+ PDF Chat Stability of compacton solutions 1998 Bishwajyoti Dey
Avinash Khare
+ On the similarity solutions and conservation laws of the Cooper‐Shepard‐Sodano equation 2018 M. S. Bruzón
Elena Recio
Tamara M. Garrido
Almudena P. Márquez
R. de la Rosa
+ Compacton equations and integrability: the Rosenau-Hyman and Cooper-Shepard-Sodano equations 2019 Rafael Hernández Heredero
Marianna Euler
Norbert Euler
Enríque G. Reyes
+ PDF Chat Parametrically driven nonlinear Dirac equation with arbitrary nonlinearity 2019 Fred Cooper
Avinash Khare
Niurka R. Quintero
B. Sánchez-Rey
Franz G. Mertens
Avadh Saxena
+ The integral factor method for solving a class of generalized KdV equation 2009 Shengqiang Tang
Jie Zheng
Zhaojuan Wang
+ PDF Chat Dissipative perturbations for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si10.gif" overflow="scroll"><mml:mrow><mml:mi>K</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mtext>,</mml:mtext><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> Rosenau–Hyman equation 2012 Julio Garralón
Francisco R. Villatoro
+ PDF Chat Numerical interactions between compactons and kovatons of the Rosenau–Pikovsky <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si87.gif" overflow="scroll"><mml:mrow><mml:mi>K</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">cos</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> equation 2012 Julio Garralón
Francisco Rus
Francisco R. Villatoro
+ PDF Chat Compactons and their variational properties for degenerate KdV and NLS in dimension 1 2019 Pierre Germain
Benjamin Harrop‐Griffiths
Jeremy L. Marzuola