On the Wiener criterion and quasilinear obstacle problems

Type: Article

Publication Date: 1988-01-01

Citations: 22

DOI: https://doi.org/10.1090/s0002-9947-1988-0965751-8

Abstract

We study the Wiener criterion and variational inequalities with irregular obstacles for quasilinear elliptic operators <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-parenthesis x comma nabla u right-parenthesis dot nabla u almost-equals StartAbsoluteValue nabla u EndAbsoluteValue Superscript p"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>≈<!-- ≈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">A(x,\,\nabla u) \cdot \nabla u \approx |\nabla u{|^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Local solutions are continuous at Wiener points of the obstacle function; if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than n minus 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the converse is also shown to be true. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than n minus 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then a characterization of the thinness of a set at a point is given in terms of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-superharmonic functions.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the Wiener Criterion and Quasilinear Obstacle Problems 1988 Juha Heinonen
Tero Kilpeläinen
+ PDF Chat Potential Estimates and Quasilinear Parabolic Equations with Measure Data 2023 Quoc Hung Nguyen
+ PDF Chat On quasilinear elliptic problems with finite or infinite potential wells 2021 Shibo Liu
+ PDF Chat Regularity results for solutions to elliptic obstacle problems in limit cases 2024 Fernando Farroni
Gianluigi Manzo
+ PDF Chat Variational problems in weighted Sobolev spaces on non-smooth domains 2010 Ana Maria Soane
Rouben Rostamian
+ On a class of nonlinear elliptic problems with obstacle 2020 L. Aharouch
Mohammed Kbiri Alaoui
Giuseppe Di Fazio
Mohamed Altanji
+ PDF Chat Weighted Hardy and Potential Operators in Morrey Spaces 2012 Natasha Samko
+ An obstacle problem via a sequence of penalized problems 2010 Elhoussine Azroul
M. Rhoudaf
+ Regularity of quasiminima and obstacle problems 1986 William P. Ziemer
+ On a Class of Fractional Obstacle Type Problems Related to the Distributional Riesz Derivative 2021 Catharine W.K. Lo
José Francisco Rodrigues
+ PDF Chat Quasilinear elliptic equations with VMO coefficients 1995 Dian K. Palagachev
+ Weak solutions for a class of quasilinear elliptic equation containing the <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"> <a:mi>p</a:mi> <a:mo stretchy="false">(</a:mo> <a:mo> ⋅ </a:mo> <a:mo stretchy="false">)</a:mo> </a:math> -Laplacian and the mean curvature operator in a variable exponent Sobolev space 2024 Junichi Aramaki
+ A regularity theory for quasi-linear Stochastic PDE<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi mathvariant="bold">s</mml:mi></mml:math> in weighted Sobolev spaces 2017 Ildoo Kim
Kyeong-Hun Kim
+ An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si11.svg" display="inline" id="d1e23"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math>-estimate for solutions to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e33"><mml:mi>p</mml:mi></mml:math>-Laplacian type equations using an obstacle approach and applications 2025 Elzon C. Bezerra Júnior
João Vítor da Silva
Romário Tomilhero Frias
+ PDF Chat Quasilinear Evolution Equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>P</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math>-Spaces with Lower Regular Initial Data 2018 Qinghua Zhang
+ PDF Chat Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain 2024 Karol Wroński
+ PDF Chat Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials 2020 Anna Canale
Francesco Pappalardo
Ciro Tarantino
+ Weighted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math>-type regularity estimates for nonlinear parabolic equations with Orlicz growth 2022 Fengping Yao
+ PDF Chat Quasilinear problems with nonlinear boundary conditions in higher-dimensional thin domains with corrugated boundaries 2023 Jean Carlos Nakasato
Marcone C. Pereira
+ W1,p(⋅) regularity for quasilinear problems with irregular obstacles on Reifenberg domains 2016 The Anh Bui
Xuan Truong Le