An Alternative to the Bounds Test for Testing for Serial Correlation in Least-Squares Regression

Type: Article

Publication Date: 1970-05-01

Citations: 76

DOI: https://doi.org/10.2307/1909548

Locations

  • Econometrica - View

Similar Works

Action Title Year Authors
+ A Nu test for serial correlation of regression model residuals 1989 Ray L. Marr
Charles P. Quesenberry
+ A simple approach to standardized-residuals-based higher-moment tests 2012 Yi‐Ting Chen
+ Bounds Testing Theory and Some Discussions about It 2008 Qiu Chang-rong
+ Transform-Both-Sides Regression 2015 Frank E. Harrell
+ TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION 1957 E. J. Hannan
+ Least absolute error estimation in the presence of serial correlation 1990 Andrew Weiss
+ A NEW DIFFERENCE METHOD FOR VARIANCE ESTIMATION IN NON-PARAMETRIC REGRESSION MODELS 2019 Magda M. M. Haggag
+ Model-Free Tests for Series Correlation in Multivariate Linear Regression 2019 Yanqing Yin
+ Testing for Serial Correlation in Least Squares Regression. III 1971 J. Durbin
G. S. Watson
+ Testing for serial correlation in regression when bounds-test is inconclusive 1972 Mj Harrison
+ Least‐Squares Regression 1993 David Birkes
Yadolah Dodge
+ PDF Chat Model-free tests for series correlation in multivariate linear regression 2019 Yanqing Yin
+ Handbook of Regression Methods 2018 Derek S. Young
+ Regression Lines: Method of Least Absolute Deviations 2014 H. Leon Harter
+ A note on the correlation betweenS 2 and the least squares estimator in the linear regression model 1993 Henning Knautz
G. Trenkler
+ Testing for Serial Correlation in Least Squares Regression. II 1951 J. Durbin
G. S. Watson
+ Robust U-type test for high dimensional regression coefficients using refitted cross-validation variance estimation 2016 Wenwen Guo
YongShuai Chen
Hengjian Cui
+ A Review on Dimension-Reduction Based Tests For Regressions 2017 Xu Guo
Lixing Zhu
+ Linear Regression 2019 Jan Novotný
Paul Bilokon
Aris Galiotos
Frédéric Délèze
+ Testing for Serial Correlation in Least Squares Regression: I 1950 J. Durbin
G. S. Watson