Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces

Type: Article

Publication Date: 1994-01-01

Citations: 114

DOI: https://doi.org/10.1090/s0002-9939-1994-1204376-4

Abstract

A problem of enduring interest in connection with the study of frames in Hubert space is that of characterizing those frames which can essentially be regarded as Riesz bases for computational purposes or which have certain desirable properties of Riesz bases. In this paper we study several aspects of this problem using the notion of a pre-frame operator and a model theory for frames derived from this notion. In particular, we show that the deletion of a finite set of vectors from a frame <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace x Subscript n Baseline right-brace Subscript n equals 1 Superscript normal infinity"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {x_n}\} _{n = 1}^\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> leaves a Riesz basis if and only if the frame is Besselian (i.e., <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation Underscript n equals 1 Overscript normal infinity Endscripts a Subscript n Baseline x Subscript n"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∑<!-- ∑ --></mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mspace width="thinmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\sum } _{n = 1}^\infty \,{a_n}{x_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> converges <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left right double arrow left-parenthesis a Subscript n Baseline right-parenthesis element-of l squared"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">⇔<!-- ⇔ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\Leftrightarrow ({a_n}) \in {l^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>).

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Pre-Frame Operators, Besselian Frames, and Near-Riesz Bases in Hilbert Spaces 1994 James R. Holub
+ PDF Chat Besselian g-frames and near g-Riesz bases 2011 Mohammad Reza Abdollahpour
Abbas Najati
+ Frames versus Riesz Bases 2003 Ole Christensen
+ Frames Versus Riesz Bases 2016 Ole Christensen
+ Frames and Riesz bases: a short survey 1997 Sergio Favier
R. A. Zalik
+ Frames Containing a Riesz Basis and Approximation of the Inverse Frame Operator 2001 Ole Christensen
Alexander Lindner
+ &lt;title&gt;Riesz frames and finite-dimensional approaches to problems in frame theory&lt;/title&gt; 1996 Ole Christensen
+ On the Riesz fusion bases in Hilbert spaces 2013 Mohammad Sadegh Asgari
+ PDF Chat φ-FRAMES AND φ-RIESZ BASES ON LOCALLY COMPACT ABELIAN GROUPS 2011 Rajab Ali Kamyabi Gol
Reihaneh Raisi Tousi
+ Frames and Riesz bases of twisted shift-invariant spaces in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2015 R. Radha
Saswata Adhikari
+ Generalized frames and their redundancy 2000 A. Askari Hemmat
Mohammad Ali Dehghan
M. Radjabalipour
+ Frames Containing a Riesz Basis and Approximation of the Frame Coefficients Using Finite-Dimensional Methods 1996 Ole Christensen
+ Characterizing Hilbert space frames with the subframe property 1998 Peter G. Casazza
+ PDF Chat Characterizing Hilbert space frames with the subframe property 1997 Peter G. Casazza
+ G-frame representation and Invertibility of g-Bessel Multipliers 2011 A. Abdollahi
Ebrahim Rahimi
+ Hilbert–Schmidt frames and their duals 2021 Yanan Li
Yun‐Zhang Li
+ Fusion-Riesz frame in Hilbert space 2017 Xuebin Li
Shouzhi Yang
+ Frames containing a Riesz basis and preservation of this property under perturbation 1995 Peter G. Casazza
Ole Christensen
+ PDF Chat Operator Characterizations and Some Properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>g</mml:mi></mml:mrow></mml:math>-Frames on Hilbert Spaces 2013 Xunxiang Guo
+ Characterizations of (near) exact g-frames, g-Riesz bases, and Besselian g-frames 2019 Xiang-Chun Xiao
Yu-Can Zhu
Guorong Zhou