Spherical mean periodic functions on semisimple Lie groups

Type: Article

Publication Date: 1979-10-01

Citations: 53

DOI: https://doi.org/10.2140/pjm.1979.84.241

Abstract

Let G be a connected semisimple noncompact Lie group with finite center. We define the notion of a smooth spherical mean periodic function (with respect to a fixed maximal compact subgroup K of G) and show that the classical results of L. Schwartz for mean periodic functions on the real line hold in this context.

Locations

  • Pacific Journal of Mathematics - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Series Analysis and Schwartz Algebras of Spherical Convolutions on Semisimple Lie Groups 2017 Olufemi O. Oyadare
+ Series Analysis and Schwartz Algebras of Spherical Convolutions on Semisimple Lie Groups 2017 Olufemi O. Oyadare
+ On harmonic analysis of spherical convolutions on semisimple Lie groups 2017 Olufemi O. Oyadare
+ The spherical Bochner theorem on semisimple Lie groups 1975 William H. Barker
+ On harmonic analysis of spherical convolutions on semisimple Lie groups 2015 Olufemi O. Oyadare
+ The Schwartz Space of a General Semisimple Lie Group 1991 Rebecca A. Herb
+ Spherical Functions on a Simply Connected Semisimple Lie Group 1977 Mogens Flensted–Jensen
+ Spherical functions on a simply connected semisimple Lie group 1977 Mogens Flensted–Jensen
+ A Quick Proof of Harish-Chandra's Plancherel Theorem for Spherical Functions on a Semisimple Lie Group 1977 Jacob Rosenberg
+ Random Fourier series for central functions on compact Lie groups 1980 A. H. Dooley
+ PDF Chat SPHERICAL FUNCTIONS ON A SEMISIMPLE LIE GROUP 1957 Harish-chandra Harish-Chandra
+ Spherical Functions on a Semisimple Lie Group 1984 Harish-chandra Harish-Chandra
+ PDF Chat The Schwartz space of a general semisimple Lie group. V. Schwartz class wave packets 1996 Rebecca A. Herb
+ PDF Chat Regularity of K-finite matrix coefficients of semisimple Lie groups 2024 Guillaume Dumas
+ The Plancherel Formula for Spherical Functions with a One-dimensional K-type on a Simply Connected Simple Lie Group of Hermitiam Type 1992 Nobukazu Shimeno
+ None 2001 Rebecca A. Herb
+ PDF Chat An analogue of the Wiener-Tauberian theorem for spherical transforms on semisimple Lie groups 1980 Alladi Sitaram
+ PDF Chat An analogue of Krein’s theorem for semisimple Lie groups 2011 Sanjoy Pusti
+ Rational functions on semisimple Lie algebras and the Gelfand-Kirillov Conjecture 2012 Vladimir L. Popov
+ Smooth functions invariant under the action of a compact lie group 1975 Gerald W. Schwarz