The Hausdorff dimension of recurrent sets in symbolic spaces

Type: Article

Publication Date: 2000-11-10

Citations: 42

DOI: https://doi.org/10.1088/0951-7715/14/1/304

Locations

  • Nonlinearity - View

Similar Works

Action Title Year Authors
+ The Hausdorff dimension of a class of recurrent sets 2005 Limin Shi
Ji Zhou
+ PDF Chat Zero-one law of Hausdorff dimensions of the recurrent sets 2016 Dong Han Kim
Bing Li
+ Zero-one law of Hausdorff dimensions of the recurrent sets 2015 Dong Han Kim
Bing Li
+ The Hausdorff and box-counting dimensions of a class of recurrent sets 2006 Meifeng Dai
Liu Xi
+ Hausdorff Dimension of a Chaotic Set of Shift of a Symbolic Space. 1995 Jincheng Xiong
+ Dimension and measure theoretic entropy of a subshift in symbolic space 1997 Chen Chen
Xiong
Jc
+ Dimension and measure theoretic entropy of a subshift in symbolic space 1997 Ercai Chen
Jincheng Xiong
+ Dimensions of recurrent sets in β-symbolic dynamics 2018 Qing-Long Zhou
+ Hausdorff measure of sets of finite type of one-sided symbolic space 1997 Zuoling Zhou
Baoguo Jia
+ PDF Chat Hausdorff dimension of recurrence sets 2024 Zhang-nan Hu
Tomas Persson
+ Recurrent functions on compact spaces 1982 Vladimír Olejček
+ Hausdorff dimension of recurrence sets 2023 Zhang-nan Hu
Tomas Persson
+ Arithmetic and Combinatorics of Recurrent Sequences 2023 R. V. Urazbakhtin
+ PDF Chat TWO-SIDED SHIFT SPACES OVER INFINITE ALPHABETS 2017 Daniel Gonçalves
Marcelo Sobottka
Charles Starling
+ Hausdorff and upper box dimension estimate of hyperbolic recurrent sets 2014 Mrinal Kanti Roychowdhury
+ PDF Chat Dimension of sets of sequences defined in terms of recurrence of their prefixes 2006 Peng Li
+ Recurrent functions and semigroups 1975 Jane Day
+ Shift Spaces 2020 Jorge Almeida
Alfredo Costa
Revekka Kyriakoglou
Dominique Perrin
+ The natural measure of a symbolic dynamical system 2013 Wen-Guei Hu
Song-Sun Lin
+ Quantitative recurrence properties in the historic set for symbolic systems 2020 Cao Zhao

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat Fractal Geometry: Mathematical Foundations and Applications. 1990 K. J. Falconer