Multilinear estimates for periodic KdV equations, and applications

Type: Article

Publication Date: 2003-09-12

Citations: 197

DOI: https://doi.org/10.1016/s0022-1236(03)00218-0

Abstract

We prove an endpoint multilinear estimate for the Xs,b spaces associated to the periodic Airy equation. As a consequence we obtain sharp local well-posedness results for periodic generalized KdV equations, as well as some global well-posedness results below the energy norm.

Locations

  • Journal of Functional Analysis - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Journal of Functional Analysis - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Multilinear estimates for periodic KdV equations and applications 2001 Jim Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ On the well-posedness of the periodic KdV equation in high regularity classes 2008 Thomas Kappeler
Jürgen Pöschel
+ On the Periodic Kdv Equation in 2008 Thomas Kappeler
Jürgen Pöschel
+ Improved bilinear Strichartz estimates with application to the well-posedness of periodic generalized KdV type equations 2022 Luc Molinet
Tomoyuki Tanaka
+ On the periodic KdV equation in weighted Sobolev spaces 2008 Jürgen Pöschel
Thomas Kappeler
+ Global well-posedness for periodic generalized KdV equation 2013 Jiguang Bao
Yifei Wu
+ PDF Local well-posedness for the periodic higher order KdV type equations 2011 Hiroyuki Hirayama
+ Energy Estimates and Existence Results for a Quasilinear Periodic Boundary Value Problem 2024 Массимилиано Феррара
Shapour Heidarkhani
Shahin Moradi
Giuseppe Caristi
+ ON THE WELLPOSEDNESS OF THE KDV-K-S EQUATION IN PERIODIC SOBOLEV SPACES 2022 Yolanda Silvia Santiago Ayala
+ PDF Chat Local well-posedness for the Zakharov-Kuznetsov equation on the background of a bounded function 2024 José M. Palacios
+ Existence and uniqueness of periodic solutions for gradient systems in finite dimensional spaces 2015 Sahbi Boussandel
+ EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES 2016 Sahbi
Boussandel
+ Local well-posedness for the Zakharov-Kuznetsov equation on the background of a bounded function 2022 José Manuel Palacios
+ Modified energies for the periodic generalized KdV equation and applications 2022 Fabrice Planchon
Nikolay Tzvetkov
Nicola Visciglia
+ Modified energies for the periodic generalized KdV equation and applications 2021 Fabrice Planchon
Nikolay Tzvetkov
Nicola Visciglia
+ The invariant subspaces of periodic Fourier multipliers with application to abstract evolution equations 2023 Sebastian Król
Jarosław Sarnowski
+ PDF Well-posedness for the non-integrable periodic fifth order KdV in Bourgain spaces 2024 Ryan McConnell
+ Well-posedness for the Non-integrable Periodic Fifth Order KdV in Bourgain Spaces 2023 Ryan McConnell
+ Local well-posedness for the KdV hierarchy at high regularity 2015 Carlos E. Kenig
Didier Pilod
+ Local well-posedness for the KdV hierarchy at high regularity 2015 Carlos E. Kenig
Didier Pilod

Works That Cite This (193)

Action Title Year Authors
+ Periodic fourth-order cubic NLS: Local well-posedness and non-squeezing property 2018 Chulkwang Kwak
+ Global existence for semilinear Schrödinger equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>dimensions 2007 Hua Wang
Shangbin Cui
+ PDF Chat Resonant decompositions and global well-posedness for 2D Zakharov-Kuznetsov equation in Sobolev spaces of negative indices 2023 Minjie Shan
Baoxiang Wang
Liqun Zhang
+ PDF Global well-posedness for low regularity data in the 2d modified Zakharov-Kuznetsov equation 2019 Debdeep Bhattacharya
Luiz Gustavo Farah
Svetlana Roudenko
+ Global well-posedness for the mass-critical nonlinear Schrödinger equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> 2011 Yongsheng Li
Yifei Wu
Guixiang Xu
+ PDF Chat Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations 2003 Michael Christ
J. Colliander
T. Tao
+ Global attractor for the periodic generalized Korteweg-De Vries equation through smoothing 2022 Ryan McConnell
+ PDF Chat Lower Bounds on the Radius of Spatial Analyticity for the KdV Equation 2016 Sigmund Selberg
Daniel Oliveira da Silva
+ Nonsqueezing property of the coupled KdV type system without Miura transform 2015 Sunghyun Hong
Soonsik Kwon
+ PDF Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes 2012 Qifan Li