Bessel series expansions of the Epstein zeta function and the functional equation

Type: Article

Publication Date: 1973-01-01

Citations: 47

DOI: https://doi.org/10.1090/s0002-9947-1973-0323735-6

Abstract

For the Epstein zeta function of an <italic>n</italic>-ary positive definite quadratic form, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n minus 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generalizations of the Selberg-Chowla formula (for the binary case) are obtained. Further, it is shown that these <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n minus 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formulas suffice to prove the functional equation of the Epstein zeta function by mathematical induction. Finally some generalizations of Kronecker’s first limit formula are obtained.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Bessel Series Expansions of the Epstein Zeta Function and the Functional Equation 1973 Audrey Terras
+ PDF Chat Exponential sums of Lerch’s zeta functions 1985 Kai Wang
+ PDF Chat 𝐿-functions of a quadratic form 1976 T. Callahan
Robert A. Smith
+ PDF Chat Ewald expansions of a class of zeta-functions 2016 Kalyan Chakraborty
Shigeru Kanemitsu
Haruo Tsukada
+ Functional Equation of the Zeta Function, Hecke’s Proof 1994 Serge Lang
+ An Inhomogeneous Epstein Zeta Function 2023 Floyd L. Williams
+ On Epstein's Zeta-function. 1967 S. Chowla
Atle Selberg
+ Epstein's zetafunctions of a binary quadratic form 1983 Ulrich Christian
+ All but finitely many non-trivial zeros of the approximations of the Epstein zeta function are simple and on the critical line 2005 Haseo Ki
+ PDF Chat A generalization of Epstein zeta functions. 1974 Chungming An
+ Ein Mittelwert Epsteinscher Zetafunktionen (II) 1938 H. von Kober
+ PDF Chat Unified Theory of Zeta-Functions Allied to Epstein Zeta-Functions and Associated with Maass Forms 2023 Wang Nian-liang
Takako Kuzumaki
Shigeru Kanemitsu
+ PDF Chat Determinant expression of Selberg zeta functions. II 1992 Shin-ya Koyama
+ Elementary Properties of the Zeta Function and L-series 1994 Serge Lang
+ On Epstein'S zeta function of Humbert forms 2008 Renaud Coulangeon
+ On Epstein’s zeta function. II 2010 O. M. Fomenko
+ On the zeros of Epstein zeta functions near the critical line 2018 Yoonbok Lee
+ On the zeros of Epstein zeta functions near the critical line 2018 Yoonbok Lee
+ Quadratic 𝑞-exponentials and connection coefficient problems 1999 Mourad E. H. Ismail
Mizan Rahman
Dennis Stanton
+ On Epstein's Zeta Function 1937 Max Deuring