Bounds for the order of supersoluble automorphism groups of Riemann surfaces

Type: Article

Publication Date: 1990-01-01

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-1990-0994795-x

Abstract

The maximal automorphism groups of compact Riemann surfaces for a class of groups positioned between nilpotent and soluble groups is investigated. It is proved that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is any finite supersoluble group acting as the automorphism group of some compact Riemann surface <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of genus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">g \geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then: (i) If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g equals 2"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">g = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue less-than-or-equal-to 24"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>24</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">|G| \leq 24</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and equality occurs when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the supersoluble group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D 4 circled-times bold upper Z 3"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{D_4} \otimes {{\mathbf {Z}}_3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that is the semidirect product of the dihedral group of order 8 and the cyclic group of order 3. This exceptional case occurs when the Fuchsian group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the signature (0;2,4,6), and can cover only this finite supersoluble group of order 24. (ii) If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g greater-than-or-equal-to 3"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">g \geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue less-than-or-equal-to 18 left-parenthesis g minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>18</mml:mn> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|G| \leq 18\left ( {g - 1} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue equals 18 left-parenthesis g minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>18</mml:mn> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|G| = 18\left ( {g - 1} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis g minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left ( {g - 1} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be a power of 3. Conversely if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis g minus 1 right-parenthesis equals 3 Superscript n Baseline comma n greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>3</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\left ( {g - 1} \right ) = {3^n},n \geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there is at least one surface <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of genus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with an automorphism group of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="18 left-parenthesis g minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mn>18</mml:mn> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">18\left ( {g - 1} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which must be supersoluble since its order is of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 3 Superscript m"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>3</mml:mn> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">2{3^m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This bound corresponds to a specific Fuchsian group given by the signature (0;2,3,18). The terms in the chief series of each of these Fuchsian groups to the point where a torsion-free subgroup is reached are computed.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Bounds for the Order of Supersoluble Automorphism Groups of Riemann Surfaces 1990 Reza Zomorrodian
+ PDF Chat Nilpotent automorphism groups of Riemann surfaces 1985 Reza Zomorrodian
+ PDF Chat Automorphism groups on compact Riemann surfaces 1970 W. T. Kiley
+ PDF Chat On a theorem of supersoluble automorphism groups 2002 Reza Zomorrodian
+ PDF Chat Supersoluble groups of automorphisms of compact Riemann surfaces 1989 Grzegorz Gromadzki
Colin M. MacLachlan
+ PDF Chat Symmetries of Accola-Maclachlan and Kulkarni surfaces 1999 Sean A Broughton
E. Bujalance
Antonio F. Costa
J. M. Gamboa
Grzegorz Gromadzki
+ PDF Chat On nilpotent groups of automorphisms of Klein surfaces 1990 E. Bujalance
Grzegorz Gromadzki
+ Supersoluble Groups of Automorphisms of Nonorientable Riemann Surfaces 1990 Grzegorz Gromadzki
+ PDF Chat A bound for the number of automorphisms of a compact Klein surface with boundary 1977 Coy L. May
+ A NOTE ON MAXIMAL AUTOMORPHISM GROUPS OF COMPACT RIEMANN SURFACES 2015 Marston Conder
+ Maximal groups of automorphisms of compact Riemann surfaces in various classes of finite groups 1988 Grzegorz Gromadzki
+ PDF Chat Nilpotent automorphism groups of bordered Klein surfaces 1987 Coy L. May
+ PDF Chat Symmetric Riemann surfaces, torsion subgroups and Schottky coverings 1987 Blaise Heltai
+ Parageometric outer automorphisms of free groups 2007 Michael Handel
Lee Mosher
+ On the orders of largest groups of automorphisms of compact Riemann surfaces 2021 Czesław Bagiński
Grzegorz Gromadzki
+ Group actions on spheres with rank one isotropy 2015 Ian Hambleton
Ergün Yalçın
+ PDF Chat Cyclic group actions on Riemann surfaces 1984 Mahgoub Yahia
+ PDF Chat p-Groups of automorphisms of compact non-orientable Riemann surfaces 2021 E. Bujalance
Francisco-Javier Cirre
J. M. Gamboa
+ Congruence subgroups and maximal Riemann surfaces 1994 Paul Schmutz
+ PDF Chat The homology and higher representations of the automorphism group of a Riemann surface 1987 Sean A Broughton