Mean value properties of the Laplacian via spectral theory

Type: Article

Publication Date: 1984-01-01

Citations: 5

DOI: https://doi.org/10.1090/s0002-9947-1984-0742422-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis z squared right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi ({z^2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an even entire function of temperate exponential type, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a selfadjoint realization of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="negative normal upper Delta plus c left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>c</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">- \Delta + c\,(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Laplace-Beltrami operator on a Riemannian manifold, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi \,(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the operator given by spectral theory. A Paley-Wiener theorem on the support of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi \,(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is proved, and is used to show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L u equals lamda u"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">Lu = \lambda u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a suitable domain implies <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis upper L right-parenthesis u equals phi left-parenthesis lamda right-parenthesis u"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi \,(L)\,u = \phi \,(\lambda )\,u</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, as well as a generalization of Àsgeirsson’s theorem. A concrete realization of the operators <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi \,(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given in the case of a compact Lie group or a noncompact symmetric space with complex isometry group.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Characterization of eigenfunctions of the Laplacian by boundedness conditions 1993 Robert S. Strichartz
+ PDF Chat One radius theorem for the eigenfunctions of the invariant Laplacian 1992 Ern Gun Kwon
+ The spectrum of the Laplacian: A geometric approach 2017 Bruno Colbois
+ A spectral mean value theorem for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="italic">GL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2010 Xiaoqing Li
+ Basis properties of eigenfunctions of the 𝑝-Laplacian 2006 Paul Binding
Lyonell Boulton
Jan Čepička
Pavel Drábek
Petr Girg
+ PDF Chat Mean Value Properties of the Laplacian via Spectral Theory 1984 Robert S. Strichartz
+ PDF Chat Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics 2009 Wolfgang Arendt
Robin Nittka
Wolfgang Peter
Frank Steiner
+ PDF Chat The Laplacian of the *-function 1985 J. Quine
+ Theory and Applications of the Laplacian 2007 Daniel Fleischer
+ Spectral Analysis of the Laplacian with a Discontinuous Coefficient 2009 Calvin H. Wilcox
+ The Laplacian Method 2002 Phil Hanlon
+ PDF Chat Spectral properties of the logarithmic Laplacian 2021 Ари Лаптев
Tobias Weth
+ Mathematical Spectrum 1969 H.M. Cundy
+ PDF Chat Weak spectral theory 1985 M. W. Wong
+ Spectrum of the Laplacian with weights 2018 Bruno Colbois
Ahmad El Soufi
+ PDF Chat Characterizing 𝑆^{𝑚} by the spectrum of the Laplacian on 2-forms 1987 S. I. Goldberg
Hillel Gauchman
+ On the first eigenvalue of the normalized 𝑝-Laplacian 2019 Graziano Crasta
Ilaria Fragalà
Bernd Kawohl
+ PDF Chat On subharmonicity of the capacity of the spectrum 1981 Zbigniew Słodkowski
+ PDF Chat The Range of the Spectral Projection Associated with the Dunkl Laplacian 2020 Salem Ben Saïd
Hatem Mejjaolı
+ The spectral theorem 2013 Paul Renteln