Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet

Type: Article

Publication Date: 1999-01-01

Citations: 18

DOI: https://doi.org/10.1051/cocv:1999111

Abstract

Consider a sub-riemannian geometry (U,D,g) where U is a neighborhood of 0 in R3, D is a Martinet type distribution identified to ker ω, ω being the 1-form: , q=(x,y,z) and g is a metric on D which can be taken in the normal form: , a=1+yF(q), c=1+G(q), . In a previous article we analyze the flat case: a=c=1; we describe the conjugate and cut loci, the sphere and the wave front. The objectif of this article is to provide a geometric and computational framework to analyze the general case. This frame is obtained by analysing three one parameter deformations of the flat case which clarify the role of the three parameters in the gradated normal form of order 0 where: , . More generally this analysis provides an explanation of the role of abnormal minimizers in SR-geometry.

Locations

  • ESAIM Control Optimisation and Calculus of Variations - View - PDF
  • Springer Link (Chiba Institute of Technology) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Le cas Martinet en géometrie sous-riemannienne 1997 Monique Chyba
+ PDF Chat The transcendence required for computing the sphere and wave front in the Martinet sub-Riemannian geometry 1999 Bernard Bonnard
Geneviève Launay
Emmanuel Trélat
+ PDF Chat The transcendence needed to compute the sphere and wave front in Martinet sub-Riemannian geometry 2001 Bernard Bonnard
Geneviève Launay
Emmanuel Trélat
+ PDF Chat Le front d'onde en géométrie sous-riemannienne : le cas Martinet 1998 Monique Chyba
+ Sub-Riemannian geometry: one-parameter deformation of the Martinet flat case 1998 Bernard Bonnard
Monique Chyba
Emmanuel Trélat
+ PDF Chat Sub-Riemannian sphere in Martinet flat case 1997 Andrei Agrachev
Bernard Bonnard
Monique Chyba
Ivan Kupka
+ Numerical methods for sub-Riemannian geometry 2003 Monique Chyba
+ Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution 2022 Ilya Aleksandrovich Bogaevsky
+ Métricas conformes en superficies compactas con frontera 2003 Gonzalo García
Oscar Montaño
+ Sub-Riemannian Geometric Analysis and PDE’s 2015 Lorenzo D’Ambrosio
Nicola Garofalo
Ermanno Lanconelli
Guozhen Lu
+ PDF Chat Stochastic calculus on manifold and application to functional inequalities 2020 Baptiste Huguet
+ PDF Chat On the role of abnormal minimizers in sub-riemannian geometry 2001 Bernard Bonnard
Emmanuel Trélat
+ On the role of abnormal minimizers in sub-Riemannian geometry 2006 Bernard Bonnard
Emmanuel Trélat
+ Eléments de géométrie analytique : rédigés conformément au programme d'admission à l'Ecole Polytechnique et à l'Ecole normale supérieure / par H. Sonnet et G. Frontera 1854 Hippolyte Sonnet
+ Almost local metrics on shape space 2010 Martin Bauer
+ Introduction to geodesics in sub-Riemannian geometry 2016 Andrei Agrachev
Davide Barilari
Ugo Boscain
+ PDF Chat Etude asymptotique et transcendance de la fonction<br />valeur en contrôle optimal. Catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet. 2000 Emmanuel Trélat
+ PDF Chat Infinite dimensional sub-Riemannian geometry and applications to shape analysis 2014 Sylvain Arguillère
+ Complexité métrique sous-riemannienne 2004 Cutberto Romero-Meléndez
+ Michel Ledoux - Isopérimétrie dans les espaces métriques mesurés 2016 Michel Ledoux
Fanny Bastien