Polynomials of 2-cable-like links

Type: Article

Publication Date: 1987-01-01

Citations: 30

DOI: https://doi.org/10.1090/s0002-9939-1987-0884479-0

Abstract

Morton and Short [<bold>MS</bold>] have established experimentally that two knots <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may have the same <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-variable polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis l comma m right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>l</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(l,m)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (see [<bold>FYHLMO</bold>], [<bold>LM</bold>]) while <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cables on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be distinguished by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove here that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are a mutant pair, then their <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cables and doubles (and other satellites which are <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stranded on the boundary of the mutating tangle) cannot be distinguished by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Similar results are true for the unoriented knot polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding="application/x-tex">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its oriented two-variable counterpart <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (see [<bold>BLM</bold>], [<bold>K</bold>]). The results are false if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 1 comma upper K 2"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_1},{K_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are links of more than one component.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Jones and 𝑄 polynomials for 2-bridge knots and links 1990 Taizo Kanenobu
+ KAUFFMAN POLYNOMIALS FOR 2-BRIDGE KNOTS AND LINKS : dedicated to Professor Masahisa Adachi on his sixtieth birthday 1991 Taizo Kanenobu
+ Linear independence of cables in the knot concordance group 2020 Christopher William Davis
JungHwan Park
Arunima Ray
+ Stick numbers of 2-bridge knots and links 2011 Youngsik Huh
Sungjong No
Seungsang Oh
+ PDF Chat There are knots whose tunnel numbers go down under connected sum 1995 Kanji Morimoto
+ Newton-like polynomials of links 2005 A. Stoimenow
+ PDF Chat Knots with infinitely many minimal spanning surfaces 1977 Julian R. Eisner
+ PDF Chat Representing knot groups into 𝑆𝐿(2,𝐶) 1992 D. Cooper
D. D. Long
+ PDF Chat Infinitely many knots with the same polynomial invariant 1986 Taizo Kanenobu
+ PDF Chat Blanchfield duality and simple knots 1975 C. Kearton
+ Conway polynomials of 2-bridge knots 2004 Yuko Mizuma
+ PDF Chat Locally flat 2-knots in 𝑆²×𝑆² with the same fundamental group 1991 Yoshihisa Sato
+ Formulas on the HOMFLY and Jones polynomials of 2-bridge knots and links : Dedicated to Professor Mitsuyoshi Kato for his 60th birthday 2000 Shigekazu Nakabo
+ Trinomials, torus knots and chains 2022 Waldemar Barrera
Julio C. Magaña-Cáceres
Juan Pablo Navarrete
+ PDF Chat Insufficiency of Torres’ conditions for two-component classical links 1986 Michael L. Platt
+ PDF Chat Primeness of twisted knots 1993 Kimihiko Motegi
+ PDF Chat Geometric indices and the Alexander polynomial of a knot 1996 Hirozumi Fujii
+ PDF Chat Examples of higher-dimensional slice knots which are not ribbon knots 1979 L. R. Hitt
+ PDF Chat THE KAUFFMAN POLYNOMIAL OF LINKS AND REPRESENTATION THEORY 1990 Jun Murakami
+ The Kauffman polynomial of links and representation theory 1987 Jun Murakami