Knots with infinitely many minimal spanning surfaces
Knots with infinitely many minimal spanning surfaces
We show that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>k</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{k_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>k</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{k_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are nonfibered knots, then the composite knot …