Compact and quasinormal composition operators

Type: Article

Publication Date: 1974-01-01

Citations: 34

DOI: https://doi.org/10.1090/s0002-9939-1974-0348545-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{C_\phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a composition operator on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared left-parenthesis lamda right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}(\lambda )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-finite measure on a set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nonatomic, then Ridge proved that no one-to-one composition operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{C_\phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with dense range is compact. This result is generalized in the paper by removing one-to-one and dense range conditions. The quasinormal composition operators are also characterized in terms of commutativity with the multiplication operator induced by the Radon-Nikodym derivative of the measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda phi Superscript negative 1"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\lambda {\phi ^{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Normal and quasinormal composition operators 1978 Robert Whitley
+ PDF Chat Subnormal composition operators 1988 Alan Lambert
+ PDF Chat Compact composition operators on the Bloch space 1995 Kevin M. Madigan
Alec Matheson
+ PDF Chat Characterization of abstract composition operators 1974 William C. Ridge
+ PDF Chat Compact weighted composition operators on 𝐿^{𝑝} 1992 Hiroyuki Takagi
+ PDF Chat Compact composition operators on 𝐵(𝐷). 1976 Donald W. Swanton
+ PDF Chat A formally normal operator having no normal extension 1985 Konrad Schmüdgen
+ PDF Chat Normal and Hermitian composition operators 1975 Raj Singh
+ PDF Chat Hyponormal powers of composition operators 1988 Phillip Dibrell
James T. Campbell
+ PDF Chat Invertible composition operators on 𝐿²(𝜆) 1976 Raj Singh
+ PDF Chat Dunford-Pettis composition operators on 𝐻¹ in several variables 1998 Alec Matheson
+ PDF Chat Contraction operators quasisimilar to a unilateral shift 1984 V. T. Alexander
+ PDF Chat On restricted weak type $(1,\,1)$ 1974 K. H. Moon
+ PDF Chat Spectra of compact composition operators 1975 James G. Caughran
Howard J. Schwartz
+ PDF Chat $\mathcal{L}$-realcompactifications as epireflections 1974 H. L. Bentley
S. A. Naimpally
+ PDF Chat On the normal spectrum of a subnormal operator 1977 John W. Bunce
James A. Deddens
+ PDF Chat Contractions with the bicommutant property 1985 Katsutoshi Takahashi
+ PDF Chat Applications of the 𝑢-closure operator 1981 M. Solveig Espelie
James E. Joseph
Myung H. Kwack
+ PDF Chat Extensions of *-representations 1990 Andreas Kasparek
+ PDF Chat Composition operator on 𝑙^{𝑝} and its adjoint 1978 Raj Singh
B. S. Komal

Works That Cite This (33)

Action Title Year Authors
+ SKEW N-NORMAL COMPOSITION AND WEIGHTED COMPOSITION OPERATORS ON L 2 (µ) 2016 Anuradha Gupta
Renu Chugh
Jagjeet Jakhar
+ PDF Chat The spectra and commutants of some weighted composition operators 1990 James W. Carlson
+ A multiplicative property characterizes quasinormal composition operators in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-spaces 2013 Piotr Budzyński
Zenon Jan Jabłoński
Il Bong Jung
Jan Stochel
+ A Shimorin-type analytic model on an annulus for left-invertible operators and applications 2019 Paweł Pietrzycki
+ Unbounded subnormal composition operators in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-spaces 2015 Piotr Budzyński
Zenon Jan Jabłoński
Il Bong Jung
Jan Stochel
+ Composition Operators on Weighted Orlicz Spaces 2017 Heera Saini
+ PDF Chat Multiplication operators and composition operators with closed ranges 1977 Raj Singh
Ashok Kumar
+ Composition Operators on Weighted Orlicz Sequence Spaces 2018 Heera Saini Aditi Sharma
Neetu Singh
+ PDF Chat $$\varvec{m}$$–Isometric Composition Operators on Directed Graphs with One Circuit 2021 Zenon Jan Jabłoński
Jakub Kośmider
+ A multiplicative property characterizes quasinormal composition operators in $L^2$-spaces 2012 Piotr Budzyński
Zenon Jan Jabłoński
Il Bong Jung
Jan Stochel

Works Cited by This (0)

Action Title Year Authors