Type: Article
Publication Date: 1974-01-01
Citations: 34
DOI: https://doi.org/10.1090/s0002-9939-1974-0348545-1
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{C_\phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a composition operator on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared left-parenthesis lamda right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}(\lambda )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-finite measure on a set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nonatomic, then Ridge proved that no one-to-one composition operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{C_\phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with dense range is compact. This result is generalized in the paper by removing one-to-one and dense range conditions. The quasinormal composition operators are also characterized in terms of commutativity with the multiplication operator induced by the Radon-Nikodym derivative of the measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda phi Superscript negative 1"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\lambda {\phi ^{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Action | Title | Year | Authors |
---|