Decomposition of the diagonal and eigenvalues of Frobenius for Fano hypersurfaces

Type: Article

Publication Date: 2005-02-01

Citations: 13

DOI: https://doi.org/10.1353/ajm.2005.0002

Abstract

Let X ⊂ [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /] be a possibly singular hypersurface of degree d ≤ n , defined over a finite field [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="02i" /]. We show that the diagonal, suitably interpreted, is decomposable. This gives a proof that the eigenvalues of the Frobenius action on its ℓ-adic cohomology H i ([inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="03i" /]), for ℓ ≠ char([inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="04i" /]), are divisible by q , without using the result on the existence of rational points by Ax and Katz.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Decomposition of the diagonal and eigenvalues of Frobenius for Fano hypersurfaces 2003 Spencer Bloch
Hélène Esnault
Marc Levine
+ Rational endomorphisms of Fano hypersurfaces 2024 Nathan Chen
David Stapleton
+ Divisibility of Frobenius eigenvalues on $\ell$-adic cohomology 2022 Hélène Esnault
Daqing Wan
+ Normal bundles of lines on hypersurfaces 2017 Hannah Larson
+ Normal bundles of lines on hypersurfaces 2017 Hannah Larson
+ Nodal quintic surfaces and lines on cubic fourfolds (with an appendix by John Christian Ottem) 2024 Daniel Huybrechts
+ Factoring the Frobenius morphism of an algebraic surface 1984 Peter B. Russell
+ Maximum number of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math>-rational points on nonsingular threefolds in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">P</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:math> 2019 Mrinmoy Datta
+ Nodal quintic surfaces and lines on cubic fourfolds 2021 Daniel Huybrechts
with an appendix by John Ottem
+ Nodal quintic surfaces and lines on cubic fourfolds 2021 Daniel Huybrechts
+ PDF Chat Kontsevich spaces of rational curves on Fano hypersurfaces 2016 Eric Riedl
David Yang
+ Dominant rational map from a very general surface in a hyperplane section in Fano threefolds 2016 Yongnam Lee
Gianpietro Pirola
+ Slopes of Frobenius in crystalline cohomology 1975 Pierre Berthelot
+ PDF Chat Singularidad de la polar de una curva plana irreducible en K(2p,2q,2pq+d) 2019 Mauro Fernando Hernández Iglesias
+ Linear system of hypersurfaces passing through a Galois orbit 2023 Shamil Asgarli
Dragos Ghioca
Zinovy Reichstein
+ On the Variety of Paths on Complete Intersections in Grassmannians 2014 S. M. Yermakova
+ Fano-Varieties of lines on hypersurfaces 1978 Wolf Barth
A. Van de Ven
+ PDF Chat Cohomological divisibility and point count divisibility 2004 Hélène Esnault
Nicholas M. Katz
+ Computing the Trace of Frobenius 2019 Dennis Gaitsgory
Jacob Lurie
+ Frobenius action, F-isocrystals and slope filtration 2004 Bernard Le Stum