The regularity of minimal surfaces defined over slit domains

Type: Article

Publication Date: 1971-04-01

Citations: 32

DOI: https://doi.org/10.2140/pjm.1971.37.109

Abstract

Let Ω denote the disc x\ + x\ < r 2 in the x = (xi, x 2 ) plane from which the segment {0 ^ Xi < r, x 2 -0} has been deleted.Suppose that u{x) e C° (Ω) is a solution to the minimal surface equation in Ω((l) below) and attains boundary values /(a?i) e C Utt (0 < a <1) on the slit {0 g x t < r, x 2 = 0}.We shall prove here that the gradient of u, Du = (u Xl ,u X2 ), is continuous at the origin x = 0.veSf JϊJ Evidently, a solution to A, if it exists, satisfies (1) in the set 109

Locations

  • Pacific Journal of Mathematics - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The boundary regularity of minimal surfaces 1969 David Kinderlehrer
+ The Boundary Regularity of Minimal Surfaces 1992 Ulrich Dierkes
Stefan Hildebrandt
Albrecht Küster
Ortwin Wohlrab
+ Regularity of Minimal Surfaces 1984 Enrico Giusti
+ Boundary Value Problems for Minimal Surfaces 1997 Stefan Hildebrandt
+ Regularity of a minimal surface at its free boundary 1988 Rugang Ye
+ PDF Chat The Regularity of Minimal Surfaces on the Movable Parts of Their Boundaries 1971 Johannes M. Nitsche
+ PDF Chat Global regularity for solutions of the minimal surface equation with continuous boundary values 1986 Graham Williams
+ Regularity of minimal surfaces : a self-contained proof 2015 Kevin Mather
+ Minimal Surfaces 2010 Ulrich Dierkes
Stefan Hildebrandt
Friedrich Sauvigny
+ PDF Chat On Differentiability of Minimal Surfaces at a Boundary Point 1971 Tunc Geveci
+ Partial regularity for Lipschitz solutions to the minimal surface system 2023 Bryan Dimler
+ PDF Chat Regularity of minimal surfaces with lower-dimensional obstacles 2019 Xavier Fernández‐Real
Joaquim Serra
+ PDF Chat Nonparametric minimal surfaces in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$R^3 $"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:mrow></mml:math>whose boundaries have a jump discontinuity 1987 Kirk Lancaster
+ Regularity of Minimal Surfaces 2010 Ulrich Dierkes
Stefan Hildebrandt
Anthony J. Tromba
+ Partial regularity for Lipschitz solutions to the minimal surface system 2023 Bryan Dimler
+ Boundary derivatives of minimal surfaces 1970 S. E. Warschawski
+ Minimal Surfaces II 1992 Ulrich Dierkes
Stefan Hildebrandt
Albrecht Küster
Ortwin Wohlrab
+ PDF Chat Differentiability of minimal surfaces at the boundary 1971 F. David Lesley
+ PDF Chat On differentiability of minimal surfaces at a boundary point 1971 Tunc Geveci
+ A Course in Minimal Surfaces 2011 Tobias Colding
William P. Minicozzi