Differentiability of minimal surfaces at the boundary
Differentiability of minimal surfaces at the boundary
Let Γ be a Jordan curve in R z and F(z) = (u(z) 9 v(z), w(z)): {\z\ ^ 1} -» R B be a solution of Plateau's problem for Γ, where z = x + iy are isothermal parameters.Then u,v,w are harmonic in {\z\ < 1} and are the real …