Type: Article
Publication Date: 1988-01-01
Citations: 89
DOI: https://doi.org/10.1090/s0002-9947-1988-0936815-x
A simply connected solvable Lie group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> together with a left-invariant Riemannian metric <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a (simply connected) Riemannian solvmanifold. Two Riemannian solvmanifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R prime comma g prime right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:msup> <mml:mi>g</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R’ ,\,g’ )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be isometric even when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R prime"> <mml:semantics> <mml:msup> <mml:mi>R</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">R’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are not isomorphic. This article addresses the problems of (i) finding the "nicest" realization <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a given solvmanifold, (ii) describing the embedding of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the full isometry group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">I(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and (iii) testing whether two given solvmanifolds are isometric. The paper also classifies all connected transitive groups of isometries of symmetric spaces of noncompact type and partially describes the transitive subgroups of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">I(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary solvmanifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.