Isometry groups of Riemannian solvmanifolds

Type: Article

Publication Date: 1988-01-01

Citations: 89

DOI: https://doi.org/10.1090/s0002-9947-1988-0936815-x

Abstract

A simply connected solvable Lie group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> together with a left-invariant Riemannian metric <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a (simply connected) Riemannian solvmanifold. Two Riemannian solvmanifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R prime comma g prime right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:msup> <mml:mi>g</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R’ ,\,g’ )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be isometric even when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R prime"> <mml:semantics> <mml:msup> <mml:mi>R</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">R’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are not isomorphic. This article addresses the problems of (i) finding the "nicest" realization <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a given solvmanifold, (ii) describing the embedding of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the full isometry group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">I(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and (iii) testing whether two given solvmanifolds are isometric. The paper also classifies all connected transitive groups of isometries of symmetric spaces of noncompact type and partially describes the transitive subgroups of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">I(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary solvmanifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,\,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat Isometry Groups of Riemannian Solvmanifolds 1988 Carolyn S. Gordon
Edward N. Wilson
+ On isometry groups of pseudo-Riemannian compact Lie groups 2021 Fuhai Zhu
Zhiqi Chen
Ke Liang
+ PDF Chat Riemannian 4-symmetric spaces 1988 J. Alfredo Jiménez
+ PDF Chat Tessellations of solvmanifolds 1998 Dave Witte
+ PDF Chat Lie groups that are closed at infinity 1989 Harry F. Hoke
+ The isometry group of semi-Riemannian manifolds 2019 Quim Llorens Giralt
+ Lie groups with all left-invariant semi-Riemannian metrics complete 2024 Ahmed Elshafei
Ana Cristina Ferreira
Miguel Sánchez
Abdelghani Zeghib
+ PDF Chat Three-dimensional solvsolitons and the minimality of the corresponding submanifolds 2017 Takahiro Hashinaga
Hiroshi Tamaru
+ Three-dimensional solvsolitons and the minimality of the corresponding submanifolds 2015 Takahiro Hashinaga
Hiroshi Tamaru
+ Sub-Riemannian problem on the three-dimensional Lie group SOLV – 2012 A. D. Mazhitova
+ PDF Chat New examples of non-symmetric Einstein solvmanifolds of negative Ricci curvature 2014 Megan M. Kerr
+ Isometries of Riemannian Manifolds 1995 Shôshichi Kobayashi
+ PDF Chat Classification of simply connected four-dimensional 𝑅𝑅-manifolds 1976 Gr. Tsagas
A. J. Ledger
+ PDF Chat Compact riemannian manifolds with essential groups of conformorphisms. 1970 A. J. Ledger
Morio Obata
+ Riemannian Submersions and Contact Metric Manifolds 2004
+ PDF Chat Einstein solvmanifolds are standard 2010 Jorge Lauret
+ Riemannian manifolds and Lie groups 2007
+ PDF Chat On 𝑛-dimensional Lorentz manifolds admitting an isometry group of dimension 𝑛(𝑛-1)/2+1 1987 Hiroo Matsuda
+ PDF Chat Rigidity of Compact Pseudo-Riemannian Homogeneous Spaces for Solvable Lie Groups 2016 Oliver Baues
Wolfgang Globke
+ PDF Chat On the Riemannian geometry of the nilpotent groups 𝐻(𝑝,𝑟) 1993 Paola Piu
Michel Goze