A restriction theorem for the Fourier transform

Type: Article

Publication Date: 1991-01-01

Citations: 14

DOI: https://doi.org/10.1090/s0273-0979-1991-16018-0

Abstract

In this note we will prove a (L , LP) -restriction theorem for certain submanifolds & of codimension / > 1 in an n-dimensional Euclidean space which arise as orbits under the action of a compact group K.As is well known such a result can in general only hold for 1 < p < j^y.We will show that for the submanifolds under consideration the inequality ^\f(x)\ 2 dKx)<C'\\f\\ 2 p holds for 1 < p < ^3f .Thus we give an answer to a problem stated by J. L. Clerc in [CL, p. 58].

Locations

  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Restriciton of the Fourier transform to quadratic submanifolds 2002 Adrian Banner
+ Tomographic Fourier Extension Identities for Submanifolds of $\mathbb{R}^n$ 2022 Jonathan Bennett
Shohei Nakamura
Shobu Shiraki
+ PDF Chat A restriction theorem for the Fourier transform 1975 Peter A. Tomas
+ Restriction theorems for the Fourier transform 1979 Peter A. Tomas
+ Isoparametric submanifolds and a Chevalley-type restriction theorem 2000 Ernst Heintze
Xiaobo Liu
Carlos Olmos
+ Restriction of the Fourier transform 2008 Marta Urciuolo
+ Fourier restriction estimates 2021 Valentina Ciccone
+ Restriction Theorems for Fourier-Dunkl Transform 2025 P Jitendra Kumar Senapati
Pradeep Boggarapu
Shyam Swarup Mondal
Hatem Mejjaoli
+ Application of a Fourier Restriction Theorem to Certain Families of Projections in $${\mathbb {R}}^3$$ R 3 2014 Daniel M. Oberlin
Richard Oberlin
+ Tomographic Fourier extension identities for submanifolds of $${\mathbb {R}}^n$$ 2024 Jonathan Bennett
Shohei Nakamura
Shobu Shiraki
+ Fourier restriction theorem and characterization of weak <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> eigenfunctions of the Laplace–Beltrami operator 2014 Pratyoosh Kumar
+ The Fourier Projection Theorem 2010 Earl J. Kirkland
+ $L^p-L^2$ Fourier restriction for hypersurfaces in $\Bbb R^3$: Part I 2012 Isroil A. Ikomov
Detlef MĂŒller
+ $L^p-L^2$ Fourier restriction for hypersurfaces in $\Bbb R^3$: Part II 2014 Isroil A. Ikromov
Detlef MĂŒller
+ Restriction theorems for the Fourier transform to some manifolds in 𝐑ⁿ 1979 Elena Prestini
+ Restriction theorem for the Fourier–Dunkl transform I: cone surface 2022 P Jitendra Kumar Senapati
Pradeep Boggarapu
Shyam Swarup Mondal
Hatem Mejjaoli
+ Fourier Transform in L p (R) Spaces, p 1 2011 Devendra Kumar
Dimple Singh
+ BĂ€cklund's Theorem for n-Dimensional Submanifolds of R 2n - 1 1980 Keti Tenenblat
Chuu-Lian Terng
+ Fourier transform and <i>k</i>-space 2001 Jeremy F. Magland
+ The Fourier theorem 1978 Raimond A. Struble