Type: Article
Publication Date: 1981-01-01
Citations: 7
DOI: https://doi.org/10.1090/s0025-5718-1981-0595062-1
A prime gap of 654 (653 consecutive composites) is found near <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1.1 times 10 Superscript 16"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1.1</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>16</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{1.1 \times 10^{16}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Action | Title | Year | Authors |
---|---|---|---|
+ | A prime gap of 682 and a prime arithmetic sequence | 1982 |
Sol Weintraub |
+ | How are the Prime Numbers Distributed? | 1989 |
Paulo Ribenboim |
+ | How Are the Prime Numbers Distributed? | 1996 |
Paulo Ribenboim |
+ | Prime Numbers | 1981 |
Richard K. Guy |
+ | Bibliography | 1988 | |
+ | How are the Prime Numbers Distributed? | 1988 |
Paulo Ribenboim |