<i>P</i>-Value Precision and Reproducibility

Type: Article

Publication Date: 2011-11-01

Citations: 163

DOI: https://doi.org/10.1198/tas.2011.10129

Abstract

P-values are useful statistical measures of evidence against a null hypothesis. In contrast to other statistical estimates, however, their sample-to-sample variability is usually not considered or estimated, and therefore not fully appreciated. Via a systematic study of log-scale p-value standard errors, bootstrap prediction bounds, and reproducibility probabilities for future replicate p-values, we show that p-values exhibit surprisingly large variability in typical data situations. In addition to providing context to discussions about the failure of statistical results to replicate, our findings shed light on the relative value of exact p-values vis-a-vis approximate p-values, and indicate that the use of *, **, and *** to denote levels 0.05, 0.01, and 0.001 of statistical significance in subject-matter journals is about the right level of precision for reporting p-values when judged by widely accepted rules for rounding statistical estimates.

Locations

  • PubMed Central - View
  • The American Statistician - View - PDF
  • Europe PMC (PubMed Central) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Statistical Significance,<i>p</i>-Values, and the Reporting of Uncertainty 2021 Guido W. Imbens
+ Assessment of P-value variability in the current replicability crisis 2016 Olga A. Vsevolozhskaya
Gabriel Ruiz
Dmitri V. Zaykin
+ PDF Chat Adaptations on the Use of p-Values for Statistical Inference: An Interpretation of Messages from Recent Public Discussions 2023 Eleni Verykouki
Christos T. Nakas
+ Assessment of P-value variability in the current replicability crisis 2016 Olga A. Vsevolozhskaya
Gabriel Ruiz
Dmitri V. Zaykin
+ <i>P</i> value functions: An underused method to present research results and to promote quantitative reasoning 2019 Denis Infanger
Arno Schmidt‐TrucksĂ€ss
+ PDF Chat Three Recommendations for Improving the Use of <i>p</i>-Values 2019 Daniel J. Benjamin
James O. Berger
+ PDF Chat Valid <i>P</i>-Values Behave Exactly as They Should: Some Misleading Criticisms of <i>P</i>-Values and Their Resolution With <i>S</i>-Values 2019 Sander Greenland
+ PDF Chat When to <i>p</i> and when not to <i>p</i> 2023 Shrikant I. Bangdiwala
+ Reproducibility Probability Estimation 2013 Daniele De Martini
+ Reproducibility Probability Testing Kills P-value 2018 Daniele De Martini
+ PDF Chat <i>P</i> in the right place: Revisiting the evidential value of <i>P</i>‐values 2018 Per Lytsy
+ The accurate reporting of software‐generated<i>p‐</i>values: A cautionary research note 2004 Timothy R. Levine
Charles K. Atkin
+ PDF Chat Reproducibility issues in science, is <i>P</i> value really the only answer? 2014 Jean Gaudart
Laetitia Huiart
Paul Milligan
Rodolphe Thiébaut
Roch Giorgi
+ PDF Chat Die Interpretation des <i>p</i>-Wertes – GrundsĂ€tzliche MissverstĂ€ndnisse 2016 Norbert Hirschauer
Oliver Mußhoff
Sven GrĂŒner
Ulrich Frey
Insa Theesfeld
PĂ©ter Wagner
+ PDF Chat A Test by Any Other Name:<i>P</i>Values, Bayes Factors, and Statistical Inference 2016 Hal S. Stern
+ PDF Chat Improving the reporting of <i><scp>P</scp></i>‐values generated by randomization methods 2013 Graeme D. Ruxton
Markus NeuhÀuser
+ Reproducibility of Statistical Hypothesis Tests 2023 Frank P. A. Coolen
+ PDF Chat Is the <i>p</i>-Value a Suitable Basis for the Construction of Measures of Evidence? Comment on “The Role of <i>p</i>-Values in Judging the Strength of Evidence and Realistic Replication Expectations” 2020 Stefan Wellek
Maria Blettner
+ PDF Chat Statement on <i>P</i>-values 2021 Thomas Gwise
Mark Rothmann
Hung Hung
Anup Amatya
Rebecca Rothwell
Sue Jane Wang
Yute Wu
Fraser Smith
Yu-Ting Weng
Eugenio Andraca‐Carrera
+ A critical evaluation of the current “<i>p</i>‐value controversy” 2017 Stefan Wellek

Works That Cite This (77)

Action Title Year Authors
+ Solutions for quantifying P-value uncertainty and replication power 2016 Laura C. Lazzeroni
Ying LĂŒ
Ilana Belitskaya‐LĂ©vy
+ PDF Chat From One Environment to Many: The Problem of Replicability of Statistical Inferences 2020 James J. Higgins
Michael Higgins
Jinguang Lin
+ Statistical inference through estimation: recommendations from the International Society of Physiotherapy Journal Editors 2022 Mark R. Elkins
Rafael Zambelli Pinto
Arianne P. Verhagen
Monika Grygorowicz
Anne Söderlund
Matthieu Guémann
Antonia Gómez–Conesa
Sarah Blanton
Jean‐Michel BrismĂ©e
Shabnam Agarwal
+ The probability of a robust inference for internal validity 2020 Tenglong Li
Kenneth A. Frank
+ PDF Chat Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications 2015 Silke Janitza
Harald Binder
Anne‐Laure Boulesteix
+ Nonparametric Predictive Inference for Reproducibility of Basic Nonparametric Tests 2013 Frank P. A. Coolen
Sulafah Bin Himd
+ Numbers etiquette in reports of pharmacy education scholarship 2016 Michael J. Peeters
Spencer E. Harpe
+ PDF Chat Implementing Monte Carlo tests with p‐value buckets 2019 Axel Gandy
Georg Hahn
Dong Ding
+ PDF Chat Statistical inference through estimation: recommendations from the International Society of Physiotherapy Journal Editors 2022 Mark R. Elkins
Rafael Zambelli Pinto
Arianne P. Verhagen
Monika Grygorowicz
Anne Söderlund
Matthieu Guémann
Antonia Gómez–Conesa
Sarah Blanton
Jean‐Michel BrismĂ©e
Shabnam Agarwal
+ PDF Chat The Role of <i>p</i>-Values in Judging the Strength of Evidence and Realistic Replication Expectations 2020 Eric W. Gibson