Type: Article
Publication Date: 2010-08-01
Citations: 21
DOI: https://doi.org/10.1214/09-aihp329
Une des méthodes pour obtenir la limite des distributions spectrales (LSD) des grandes matrices aléatoires est la fameuse méthode des moments, basée sur la formule des traces. Son succès a été clairement établi pour différents types de matrices telles que les matrices de Wigner et les matrices de covariance. Dans un article récent, Bryc, Dembo et Jiang [Ann. Probab. 34 (2006) 1–38] ont obtenu la LSD pour des matrices de Toeplitz et de Hankel en utilisant cette méthode. Ils arrivent à estimer les traces des moments de telles matrices en séparant les différents termes par classes d’équivalence et en reliant les asymptotiques des dénombrements afférents avec les calculs de certains volumes. Bose et Sen [Electron. J. Probab. 13 (2008) 588–628] ont développé cette idée et ont donné un cadre général pour traiter de matrices symmétriques dont les entrées viennent d’une suite indépendante. Dans cet article, nous généralisons cette approche pour considérer des matrices de la form $A_{p}=\frac{1}{n}XX'$ où X est une matrice p×n avec des entrées réelles. Nous démontrons un résultat général d’existence de la LSD de telles matrices, correctement recentrées et rééchelonnées, quand p et n tendent vers l’infini de telle façon que p/n tende vers y∈(0, ∞). Par exemple, nous montrons l’existence de la LSD quand X est la matrice asymétrique de Hankel, de Toeplitz, circulante ou circulante inverse. En particulier, quand y=0, les limites correspondent à celles obtenues par Bryc, Dembo et Jiang [Ann. Probab. 34 (2006) 1–38]. Sinon, nous obtenons de nouvelles lois limites pour lesquelles aucune expression explicite n’est connue. Nous étudions ces lois par quelques simulations.