Ask a Question

Prefer a chat interface with context about you and your work?

Convergence to the Semicircle Law

Convergence to the Semicircle Law

This article proves that the spectral distribution of the random matrix $(1/2\sqrt{np}) (X_pX'_p)$, where $X_p = \lbrack X_{ij}\rbrack_{p\times n}$ and $\lbrack X_{ij}: i, j = 1,2,\ldots\rbrack$ has iid entries with $EX^4_{11} < \infty, \operatorname{Var}(X_{11}) = 1$, tends to the semicircle law as $p \rightarrow \infty, p/n \rightarrow 0$, a.s.