Exact high temperature expansion of the one-loop thermodynamic potential with complex chemical potential

Type: Article

Publication Date: 2014-02-06

Citations: 5

DOI: https://doi.org/10.1103/physrevd.89.036001

Abstract

We present a derivation of an exact high temperature expansion for a one-loop thermodynamic potential $\mathrm{\ensuremath{\Omega}}(\stackrel{\texttildelow{}}{\ensuremath{\mu}})$ with complex chemical potential $\stackrel{\texttildelow{}}{\ensuremath{\mu}}$. The result is given in terms of a single sum, the coefficients of which are analytical functions of $\stackrel{\texttildelow{}}{\ensuremath{\mu}}$ consisting of polynomials and polygamma functions, decoupled from the physical expansion parameter $\ensuremath{\beta}m$. The analytic structure of the coefficients permits us to explicitly calculate the thermodynamic potential for the imaginary chemical potential and analytically continue the domain to the complex $\stackrel{\texttildelow{}}{\ensuremath{\mu}}$ plane. Furthermore, our representation of $\mathrm{\ensuremath{\Omega}}(\stackrel{\texttildelow{}}{\ensuremath{\mu}})$ is particularly well suited for the Landau-Ginzburg type of phase transition analysis. This fact, along with the possibility of interpreting the imaginary chemical potential as an effective generalized-statistics phase, allows us to investigate the singular origin of the ${m}^{3}$ term appearing only in the bosonic thermodynamic potential.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • Institutional Repository of the Ruđer Bošković Institute (Ruđer Bošković Institute) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Integral representations of thermodynamic 1PI Green’s functions in the world-line formalism 1999 Haru-Tada Sato
+ A diagrammatic approach towards the thermodynamics of integrable systems 2020 Dinh-Long Vu
+ PDF Chat Free energy expansions of a conditional GinUE and large deviations of the smallest eigenvalue of the LUE 2024 Sung‐Soo Byun
Seong-Mi Seo
Meng Yang
+ PDF Chat Thermodynamics of two-dimensional ideal ferromagnets: Three-loop analysis 2012 Christoph P. Hofmann
+ PDF Chat Thermodynamic analogy for quantum phase transitions at zero temperature 2005 Pavel Cejnar
Stefan Heinze
J. Dobeš
+ A diagrammatic approach towards the thermodynamics of integrable systems 2020 Dinh-Long Vu
+ PDF Chat Extended mean field study of complex<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>φ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>-theory at finite density and temperature 2014 Oscar Åkerlund
Philippe de Forcrand
Antoine Georges
Philipp Werner
+ PDF Chat Thermodynamic Analogy for Structural Phase Transitions 2005 Pavel Cejnar
+ PDF Chat Remarks on the large-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="double-struck">C</mml:mi><mml:msup><mml:mi>P</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>model 2020 Antonino Flachi
+ The thermodynamic Bethe Ansatz approach to exactly solvable models in statistical mechanics and quantum field theory 1998 R.M. Ellem
+ PDF Chat Nature of phase transitions in a generalized complex<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mo>∣</mml:mo><mml:mi>ψ</mml:mi><mml:mo>∣</mml:mo></mml:mrow><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:math>model 2005 Elmar Bittner
Wolfhard Janke
+ PDF Chat Introduction to the thermodynamic Bethe ansatz 2016 Stijn J. van Tongeren
+ PDF Chat Solution to the 3-loop<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Φ</mml:mi></mml:math>-derivable approximation for massless scalar thermodynamics 2002 Eric Braaten
E. Petitgirard
+ The full analytic trans-series in integrable field theories 2023 Zoltán Bajnok
János Balog
István Vona
+ The full analytic trans-series in integrable field theories 2022 Zoltán Bajnok
János Balog
István Vona
+ PDF Chat Hidden Critical Points in the Two-Dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> Model: Exact Numerical Study of a Complex Conformal Field Theory 2023 Arijit Haldar
Omid Tavakol
Han Ma
Thomas Scaffidi
+ PDF Chat Nonperturbative renormalization group treatment of amplitude fluctuations for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mo>|</mml:mo><mml:mi mathvariant="bold">φ</mml:mi><mml:mo>|</mml:mo></mml:mrow><mml:mn mathvariant="bold-italic">4</mml:mn></mml:msup></mml:math>topological phase transitions 2017 Nicolò Defenu
Andrea Trombettoni
I. Nándori
Tilman Enss
+ PDF Chat Finite-temperature many-body perturbation theory in the grand canonical ensemble 2020 So Hirata
Punit K. Jha
+ PDF Chat Phase transitions in the complex plane of physical parameters 2014 Bo-Bo Wei
Shao-Wen Chen
Hoi Chun Po
Ren‐Bao Liu
+ Particles in a box as a simple model for testing statistical field-theory 2014 Derek Frydel