The initial-Neumann problem for the heat equation in Lipschitz cylinders

Type: Article

Publication Date: 1990-01-01

Citations: 49

DOI: https://doi.org/10.1090/s0002-9947-1990-1000330-7

Abstract

We prove existence and uniqueness for solutions of the initial-Neumann problem for the heat equation in Lipschitz cylinders when the lateral data is in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 greater-than p greater-than 2 plus epsilon"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 &gt; p &gt; 2+\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with respect to surface measure. For convenience, we assume that the initial data is zero. Estimates are given for the parabolic maximal function of the spatial gradient. An endpoint result is established when the data lies in the atomic Hardy space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Similar results are obtained for the initial-Dirichlet problem when the data lies in a space of potentials having one spatial derivative and half of a time derivative in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 greater-than p greater-than 2 plus epsilon"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 &gt; p &gt; 2+\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with a corresponding Hardy space result when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p equals 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using these results, we show that our solutions may be represented as single-layer heat potentials. By duality, it follows that solutions of the initial-Dirichlet problem with data in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript q"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 minus epsilon Superscript prime Baseline greater-than q greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>&gt;</mml:mo> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2 - \varepsilon ’ &gt; q &gt; \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <italic>BMO</italic> may be represented as double-layer heat potentials.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Initial-Neumann Problem for the Heat Equation in Lipschitz Cylinders 1990 R. M. Brown
+ PDF Chat Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders 1983 Eugene B. Fabes
Sandro Salsa
+ PDF Chat A note on boundary value problems for the heat equation in Lipschitz cylinders 1993 R. M. Brown
Zhong Wei Shen
+ PDF Chat The oblique derivative problem for the heat equation in Lipschitz cylinders 1989 R. M. Brown
+ PDF Chat The Oblique Derivative Problem for the Heat Equation in Lipschitz Cylinders 1989 R. M. Brown
+ EQUATION IN LIPSCHITZ CYLINDERS 2016 R. M. Brown
+ PDF Chat A Note on Boundary Value Problems for the Heat Equation in Lipschitz Cylinders 1993 R. M. Brown
Zhongwei Shen
+ PDF Chat A Fatou theorem for the solution of the heat equation at the corner points of a cylinder 1992 Kin Ming Hui
+ PDF Chat Estimates of Caloric Measure and the Initial-Dirichlet Problem for the Heat Equation in Lipschitz Cylinders 1983 Eugene B. Fabes
Sandro Salsa
+ A note on the convergence to initial data of heat and Poisson equations 2012 Silvia Hartzstein
José L. Torrea
Beatriz Viviani
+ On Initial-Boundary Value Problem of the Stochastic Heat Equation in Lipschitz Cylinders 2012 Tongkeun Chang
Kijung Lee
Minsuk Yang
+ PDF Chat ON THE SMOOTHNESS OF THE SOLUTION FOR THE INITIAL-NEUMANN PROBLEM FOR THE HYPERBOLIC SYSTEMS IN LIPSCHITZ CYLINDERS 2012 Manh‐Hung Nguyen
Phung Kim Chuc
+ Parabolic layer potentials and initial boundary value problems in Lipschitz cylinders with data in Besov spaces 2006 Tünde Jakab
+ The Neumann problem for the equation Δ𝑢-𝑘²𝑢=0 in the exterior of non-closed Lipschitz surfaces 2013 П. А. Крутицкий
+ PDF Chat Initial boundary-value problems for the parabolic Maxwell system in Lipschitz cylinders 1995 Marius Mitrea
+ Initial traces and solvability for a semilinear heat equation on a half space of ℝ^{ℕ} 2023 Kotaro Hisa
Kazuhiro Ishige
Jin Takahashi
+ PDF Chat Existence of weak solutions for the Navier-Stokes equations with initial data in 𝐿^{𝑝} 1990 Calixto P. Calderón
+ PDF Chat Initial boundary value problem for a inhomogeneous pseudo-parabolic equation 2020 Jun Zhou
+ Boundary value problems for higher order parabolic equations 2000 R. M. Brown
Wei Hu
+ The initial-boundary value problems for the heat operator in non-cylindrical domains Dedicated to Professor M. Nakai on the occasion of his 60th birthday 1997 Hisako Watanabe