The Oblique Derivative Problem for the Heat Equation in Lipschitz Cylinders
The Oblique Derivative Problem for the Heat Equation in Lipschitz Cylinders
We consider a class of initial-boundary value problems for the heat equation on $(0.T) \times \Omega$ with $\Omega$ a bounded Lipschitz domain in ${{\mathbf {R}}^n}$. On the lateral boundary, $(0,T) \times \partial \Omega = {\Sigma _T}$, we specify $\left \langle {\alpha ,\nabla u} \right \rangle$ where $\nabla u$ denotes the …