Variational Inequalities with Multivalued Lower Order Terms and Convex Functionals in Orlicz-Sobolev Spaces

Type: Article

Publication Date: 2015-01-01

Citations: 7

DOI: https://doi.org/10.1155/2015/321437

Abstract

We consider the existence of solutions of variational inequality form. Find<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>u</mml:mi><mml:mo>∈</mml:mo><mml:mi>D</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>J</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>:</mml:mo><mml:mo stretchy="false">〈</mml:mo><mml:mi mathvariant="script">A</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>-</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">〉</mml:mo><mml:mo>+</mml:mo><mml:mo stretchy="false">〈</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>-</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">〉</mml:mo><mml:mo>+</mml:mo><mml:mi>J</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>-</mml:mo><mml:mi>J</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>≥</mml:mo><mml:mn>0</mml:mn></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mo>∀</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">Ω</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo></mml:math>whose principal part is having a growth not necessarily of polynomial type, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi mathvariant="script">A</mml:mi></mml:mrow></mml:math>is a second-order elliptic operator of Leray-Lions type,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>F</mml:mi></mml:mrow></mml:math>is a multivalued lower order term, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>J</mml:mi></mml:mrow></mml:math>is a convex functional. We use subsupersolution methods to study the existence and enclosure of solutions in Orlicz-Sobolev spaces.

Locations

  • Journal of Function Spaces - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ On variational and quasi-variational inequalities with multivalued lower order terms and convex functionals 2013 Vy Khoi Le
+ On Parabolic Variational Inequalities with Multivalued Terms and Convex Functionals 2018 Vy Khoi Le
Klaus Schmitt
+ Variational inequalities in Orlicz-Sobolev spaces 1987 Jean–Pierre Gossez
Vesa Mustonen
+ Variational Inequalities with General Multivalued Lower Order Terms Given by Integrals 2011 Vy Khoi
+ On quasi-variational inequalities with discontinuous multivalued lower order terms given by bifunctions 2015 Vy Khoi Le
+ Variational inequalities 2015 Nikolaos E. Sofronidis
+ On variational inequalities with maximal monotone operators and multivalued perturbing terms in Sobolev spaces with variable exponents 2011 Vy Khoi Le
+ On Variational Inequalities with Multivalued Perturbing Terms Depending on Gradients 2017 Vy Khoi Le
+ PDF Chat On systems of parabolic variational inequalities with multivalued terms 2020 Siegfried Carl
Vy Khoi Le
+ PDF Chat Composite schemes for variational inequalities over equilibrium problems and variational inclusions 2013 Yonghong Yao
Jung Im Kang
Yeol Je Cho
Yeong‐Cheng Liou
+ An existence result for weakly homogeneous variational inequalities 2020 Meng-Meng Zheng
Zheng‐Hai Huang
+ PDF Chat Error estimates for the approximation of a class of variational inequalities 1974 Richard S. Falk
+ Weighted Variational Inequalities 2005 Qamrul Hasan Ansari
Zaheer Khan
Abul Hasan Siddiqi
+ Variational problems with inequality constraints 1962 Stuart E. Dreyfus
+ PDF Chat Existence and Relaxation Results for Second Order Multivalued Systems 2021 Νικόλαος Παπαγεωργίου
Calogero Vetro
+ The variational inequalities 1993 Jong‐Shenq Guo
Jen‐Chih Yao
+ A lower and upper bounds version of a variational inequality 2000 Jinlu Li
+ PDF Chat Quasilinear noncoercive bilateral hemivariational inequalities in $D^{1, p}(\mathbb{R}^N)$: Existence and compactness results 2024 Siegfried Carl
+ Existence Results for Quasi-Variational Inequalities with Multivalued Perturbations of Maximal Monotone Mappings 2016 Vy Khoi Le
+ PDF Chat Solving the Variational Inequality Problem Defined on Intersection of Finite Level Sets 2013 Songnian He
Yang Cai-ping