Spherical polynomials and the periods of a certain modular form

Type: Article

Publication Date: 1986-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9947-1986-0825724-0

Abstract

The space of cusp forms on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper L Subscript 2 Baseline left-parenthesis bold upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>S</mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>L</mml:mtext> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {S}}{{\text {L}}_2}({\mathbf {Z}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of weight <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 k"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is spanned by certain modular forms with rational periods.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Modular forms and Period polynomials 2021 YoungJu Choie
+ PDF Chat Periods of automorphic forms 1999 Hervé Jacquet
Erez Lapid
Jonathan David Rogawski
+ Bessel periods and anticyclotomic 𝑝-adic spinor 𝐿-functions 2024 Ming-Lun Hsieh
Shunsuke Yamana
+ PDF Chat Modular forms which behave like theta series 1997 Kalyan Chakraborty
A. K. Lal
B. Ramakrishnan
+ Sums of Fourier coefficients of cusp forms of level 𝐷 twisted by exponential functions over arithmetic progressions 2017 Huan Liu
Meng Zhang
+ PDF Chat On the coefficients of the minimal polynomials of Gaussian periods 1993 Subhojoy Gupta
Don Zagier
+ Nonvanishing of Fourier coefficients of modular forms 2002 Emre Alkan
+ PDF Chat A local Weyl’s law, the angular distribution and multiplicity of cusp forms on product spaces 1992 J. M. Huntley
David E. Tepper
+ Non-existence of Siegel zeros for cuspidal functorial products on 𝐺𝐿(2)×𝐺𝐿(3) 2022 Wenzhi Luo
+ Periods of Modular Forms 1982 Glenn Stevens
+ Periods of modular forms and Jacobi theta functions 1991 Don Zagier
+ Vanishing linear periods of cuspidal automorphic sheaves for 𝐺𝐿_{𝑚+𝑛} 2024 Fang Shi
+ PDF Chat Properties that characterize Gaussian periods and cyclotomic numbers 1996 F. Thaine
+ Integral periods for modular forms 2013 Vinayak Vatsal
+ PDF Chat On the minimal polynomial of Gauss periods for prime powers 2006 S. Gurak
+ Modular Spaces of Cubic and Quartic Polynomials 2011
+ PDF Chat Fourier coefficients of modular forms 2017 Henri Cohen
Fredrik Strömberg
+ Fourier coefficients of modular forms 1985 V. Kumar Murty
+ Modular forms arising from spherical polynomials and positive definite quadratic forms 1977 Frederic Gooding
+ Interpolated Apéry numbers, quasiperiods of modular forms, and motivic gamma functions 2021 Vasily Golyshev
Don Zagier