Quantum error correction during 50 gates

Type: Article

Publication Date: 2014-02-05

Citations: 11

DOI: https://doi.org/10.1103/physreva.89.020301

Abstract

Fault tolerant protocol assumes the application of error correction after every quantum gate. However, correcting errors is costly in terms of time and number of qubits. Here we demonstrate that quantum error correction can be applied significantly less often with only a minimal loss of fidelity. This is done by simulating the implementation of 50 encoded, single-qubit, quantum gates within the [[7,1,3]] quantum error correction code in a noisy, non-equiprobable Pauli error environment with error correction being applied at different intervals. We find that applying error correction after every gate is rarely optimal and even applying error correction only once after all 50 gates, though not generally optimal, sacrifices only a slight amount of fidelity with the benefit of 50-fold saving of resources. In addition, we find that in cases where bit-flip errors are dominant, it is best not to apply error correction at all.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ How Often Must Quantum Error Correction be Implemented 2013 Yaakov S. Weinstein
+ PDF Chat Quantum-error-correction implementation after multiple gates 2013 Yaakov S. Weinstein
+ Encoding an Arbitrary State in a [7,1,3] Quantum Error Correction Code 2011 Sidney Buchbinder
Channing L. Huang
Yaakov S. Weinstein
+ Encoding an Arbitrary State in a [7,1,3] Quantum Error Correction Code 2011 Sidney Buchbinder
Channing L. Huang
Yaakov S. Weinstein
+ PDF Chat Quantum Error Correction For Dummies 2023 Avimita Chatterjee
Koustubh Phalak
Swaroop Ghosh
+ Quantum Error Correction For Dummies 2023 Avimita Chatterjee
Koustubh Phalak
Swaroop Ghosh
+ PDF Chat Quantum error correction: an introductory guide 2019 Joschka Roffe
+ PDF Chat Optimizing the Frequency of Quantum Error Correction 2017 Ali Abu-Nada
Ben Fortescue
Mark Byrd
+ Exponential suppression of bit or phase flip errors with repetitive quantum error correction 2021 Zijun Chen
Kevin J. Satzinger
Juan Atalaya
Alexander N. Korotkov
A. Dunsworth
D. Sank
Chris Quintana
Matt McEwen
R. Barends
Paul V. Klimov
+ PDF Chat \texttt{qec\_code\_sim}: An open-source Python framework for estimating the effectiveness of quantum-error correcting codes on superconducting qubits 2024 Santiago López
Jonathan Andrade Plascencia
Gabriel Perdue
+ Automatic Implementation and Evaluation of Error-Correcting Codes for Quantum Computing: An Open-Source Framework for Quantum Error Correction 2023 Thomas Grurl
Christoph Pichler
Jürgen Fuß
Robert Wille
+ PDF Chat Automatic Implementation and Evaluation of Error-Correcting Codes for Quantum Computing: An Open-Source Framework for Quantum Error Correction 2023 Thomas Grurl
Christoph Pichler
Jürgen Fuß
Robert Wille
+ PDF Chat Quantum Error Correction and Fault Tolerance 2006 Daniel Gottesman
+ PDF Chat Suppressing quantum errors by scaling a surface code logical qubit 2022 Rajeev Acharya
I. L. Aleǐner
Richard P. Allen
Trond I. Andersen
M. Ansmann
Frank Arute
Kunal Arya
Abraham Asfaw
Juan Atalaya
Ryan Babbush
+ Suppressing quantum errors by scaling a surface code logical qubit 2022 Rajeev Acharya
I. L. Aleǐner
Richard P. Allen
Trond I. Andersen
M. Ansmann
Frank Arute
Kunal Arya
Abraham Asfaw
Juan Atalaya
Ryan Babbush
+ PDF Chat Bounding quantum gate error rate based on reported average fidelity 2015 Yuval R. Sanders
Joel J. Wallman
Barry C. Sanders
+ Syndrome Measurement Strategies for the [[7,1,3]] Code 2015 Yaakov S. Weinstein
+ PDF Chat Efficient diagnostics for quantum error correction 2022 Pavithran Iyer
Aditya Jain
Stephen D. Bartlett
Joseph Emerson
+ PDF Chat Quantum Error Correction 2020 Todd A. Brun
+ Quantum Error Correction 2019 Todd A. Brun