Ask a Question

Prefer a chat interface with context about you and your work?

Asymptotically Optimal Approximation of Single Qubit Unitaries by Clifford and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi></mml:math>Circuits Using a Constant Number of Ancillary Qubits

Asymptotically Optimal Approximation of Single Qubit Unitaries by Clifford and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi></mml:math>Circuits Using a Constant Number of Ancillary Qubits

Decomposing unitaries into a sequence of elementary operations is at the core of quantum computing. Information theoretic arguments show that approximating a random unitary with precision $\ensuremath{\epsilon}$ requires $\ensuremath{\Omega}\mathbf{(}\mathrm{log}(1/\ensuremath{\epsilon})\mathbf{)}$ gates. Prior to our work, the state of the art in approximating a single qubit unitary included the Solovay-Kitaev algorithm that …