Topological properties of quantum periodic Hamiltonians

Type: Article

Publication Date: 2000-01-07

Citations: 13

DOI: https://doi.org/10.1088/0305-4470/33/3/308

Abstract

We consider periodic quantum Hamiltonians on the torus phase space (Harper-like Hamiltonians). We calculate the topological Chern index which characterizes each spectral band in the generic case. This calculation is made by a semiclassical approach with the use of quasi-modes. As a result, the Chern index is equal to the homotopy of the path of these quasi-modes on phase space as the Floquet parameter of the band is varied. It is quite interesting that the Chern indices, defined as topological quantum numbers, can be expressed from simple properties of the classical trajectories.

Locations

  • Journal of Physics A Mathematical and General - View
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Isomorphic chain complexes of Hamiltonian dynamics on tori 2013 M. H. Hecht
+ Isomorphic chain complexes of Hamiltonian dynamics on tori 2013 Michael Hecht
+ PDF Chat Isomorphic chain complexes of Hamiltonian dynamics on tori 2013 Michael Hecht
+ Hyperbolic Hamiltonian flows and the semi-classical Poincaré map 2013 H. Fadhlaoui
H. Louati
M. Rouleux
+ Hyperbolic Hamiltonian flows and the semi-classical Poincar\'e map 2013 H. Fadhlaoui
H. Louati
Michel Rouleux
+ Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum 2007 Kristian Bjerklöv
+ Hyperbolic Hamiltonian flows and the semi-classical Poincaré map 2013 H. Fadhlaoui
H. Louati
Michel Rouleux
+ Résonances Semiclassiques Engendrées par des Croisements de Trajectoires Classiques 2021 Kenta Higuchi
+ Stroboscopic quantization of autonomous systems 2000 Bruno Eckhardt
Uzy Smilansky
+ KAM Theory: Quasi-periodicity in Dynamical Systems 2010 Henk Broer
Mikhail B. Sevryuk
+ Holonomic control operators in quantum completely integrable Hamiltonian systems 2002 G. Sardanashvily
+ A Survey on the Classical Limit of Quantum Dynamical Entropies 2007 Valerio Cappellini
+ Homoclinic orbits for a nonperiodic Hamiltonian system 2007 Yanheng Ding
Louis Jeanjean
+ The dynamics of a class of quasi-periodic Schrödinger cocycles 2013 Kristian Bjerklöv
+ PDF Chat R\'esonances Semiclassiques Engendr\'ees par des Croisements de Trajectoires Classiques 2021 Kenta Higuchi
+ PDF Chat Quantization of multidimensional cat maps 2000 Alejandro M. F. Rivas
Marcos Saraceno
Alfredo M. Ozorio de Almeida
+ PDF Chat Quasi-periodic propagation in time of some classical/quantum systems: Nielsen's conserved quantity and Floquet properties 2009 Peter Krämer
Tobias Kramer
V. I. Man’ko
+ The fractal structure of quasi-periodic solutions of hamiltonian systems 1995 C. Marchal
+ PDF Chat Tunneling and the Band Structure of Chaotic Systems 1994 P. Lebœuf
Anne Mouchet
+ Excitations in one dimension: A geometrical view of the transfer matrix method 1997 Nicolas Destainville
Jean‐François Sadoc