A Runge theorem for harmonic functions on closed subsets of Riemann surfaces

Type: Article

Publication Date: 1988-01-01

Citations: 10

DOI: https://doi.org/10.1090/s0002-9939-1988-0938662-7

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a closed subset of a Riemann surface <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that every function which is harmonic on a neighborhood of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be uniformly approximated on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by functions which are harmonic on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> except for poles.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Approximation by harmonic functions 1997 Evgeny A. Poletsky
+ PDF Chat A Runge Theorem for Harmonic Functions on Closed Subsets of Riemann Surfaces 1988 Thomas Bagby
+ PDF Chat A characterization of harmonic Arakelyan sets 1993 M. Goldstein
Wellington H. Ow
+ The qualitative behavior for 𝛼-harmonic maps from a surface with boundary into a sphere 2022 Jiayu Li
Chaona Zhu
Miaomiao Zhu
+ Approximation by harmonic functions on closed subsets of Riemann surfaces 1988 Thomas Bagby
P. M. Gauthier
+ 𝐿𝑖𝑝𝛼 harmonic approximation on closed sets 2001 A. Bonilla
Juan C. Fariña
+ PDF Chat Noninvariance of an approximation property for closed subsets of Riemann surfaces 1980 Stephen Scheinberg
+ PDF Chat 𝑝-harmonic functions in the plane 1988 Juan J. Manfredi
+ PDF Chat Subharmonic functions outside a compact set in 𝑅ⁿ 1982 Victor Anandam
+ PDF Chat Meromorphic functions on a compact Riemann surface and associated complete minimal surfaces 1989 Kichoon Yang
+ PDF Chat Uniform harmonic approximation of bounded functions 1996 Stephen J. Gardiner
+ A uniqueness result for harmonic functions 2001 Richard F. Bass
+ PDF Chat On the area of harmonic surfaces 1978 Michael Beeson
+ PDF Chat Sets of determination for harmonic functions 1993 Stephen J. Gardiner
+ PDF Chat Global approximation in harmonic spaces 1994 Stephen J. Gardiner
M. Goldstein
Kohur Gowrisankaran
+ PDF Chat Minimal harmonic functions on Denjoy domains 1989 Stephen J. Gardiner
+ PDF Chat Functions of uniformly bounded characteristic on Riemann surfaces 1985 Shinji Yamashita
+ 𝑝 harmonic measure in simply connected domains revisited 2014 John W. Lewis
+ PDF Chat On the Liouville theorem for harmonic maps 1982 Hyeong In Choi
+ PDF Chat Some harmonic 𝑛-slit mappings 1998 Michael Dorff

Works That Cite This (10)

Action Title Year Authors
+ PDF Chat Asymptotic Maximum Principles for Subharmonic and Plurisubharmonic Functions 1988 P. M. Gauthier
René Grothmann
Walter Hengartner
+ PDF Chat Submanifolds that are level sets of solutions to a second-order elliptic PDE 2013 Alberto Enciso
Daniel Peralta‐Salas
+ PDF Chat Продолжения типа Рунге и Уолша гладких субгармонических функций на открытых римановых поверхностях 2015 André Boivin
Paul M. Gauthier
Петр Владимирович Парамонов
+ PDF Chat Приближения Бишопа - Рунге и обращение теоремы Римана - Клейна 2015 Vincent Michel
Gennadi Markovich Henkin
+ PDF Chat Bishop-Runge approximations and inversion of a Riemann-Klein theorem 2015 Gennadi M. Henkin
Vincent Michel
+ Bishop-Runge approximations and inversion of a Riemann-Klein theorem 2013 Gennadi M. Henkin
Vincent Michel
+ Uniform harmonic approximation on Riemannian manifolds 1994 Thomas Bagby
Pierre J. Blanchet
+ Submanifolds that are level sets of solutions to a second-order elliptic PDE 2010 Alberto Enciso
Daniel Peralta‐Salas
+ Approximation by harmonic functions on closed subsets of Riemann surfaces 1988 Thomas Bagby
P. M. Gauthier
+ Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces 2015 André Boivin
Paul M. Gauthier
Петр Владимирович Парамонов