Ask a Question

Prefer a chat interface with context about you and your work?

Noninvariance of an approximation property for closed subsets of Riemann surfaces

Noninvariance of an approximation property for closed subsets of Riemann surfaces

A closed subset <italic>E</italic> of an open Riemann surface <italic>M</italic> is said to have the approximation property <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script a"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">a</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {a}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if each continuous function on <italic>E</italic> which is analytic at all interior points of …