Group actions on aspherical 𝐴_{π‘˜}(𝑁)-manifolds with nonzero Euler characteristics

Type: Article

Publication Date: 1984-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1984-0728369-x

Abstract

By an aspherical <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript k Baseline left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_k}(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifold, we mean a compact manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> together with a map <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into an aspherical complex <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>f</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{f^*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript k Baseline left-parenthesis upper N semicolon upper Q right-parenthesis right-arrow upper H Superscript k Baseline left-parenthesis upper M semicolon upper Q right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>;</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>;</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^k}(N;Q) \to {H^k}(M;Q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nontrivial. In this paper we study the fixed point set, degree of symmetry, semisimple degree of symmetry and torus degree of symmetry of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with the Euler characteristic of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> nonzero.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Group actions on aspherical 𝐴_{π‘˜}(𝑁)-manifolds 1983 HsΓΌ Tung Ku
Mei Chin Ku
+ PDF Chat Group actions on 𝐴_{π‘˜}-manifolds 1978 HsΓΌ Tung Ku
Mei Chin Ku
+ PDF Chat The signature and arithmetic genus of certain aspherical manifolds 1976 F. T. Farrell
+ PDF Chat Compact group actions and maps into 𝐾(πœ‹,1)-spaces 1985 Daniel Henry Gottlieb
Kyung B. Lee
Murad Γ–zaydΔ±n
+ PDF Chat On mapping class groups of contractible open 3-manifolds 1993 Robert C. Myers
+ PDF Chat Classification of circle actions on 4-manifolds 1978 Ronald Fintushel
+ PDF Chat Manifolds with (𝑍₂)^{π‘˜}-action 1989 Pedro L. Q. Pergher
+ PDF Chat Foliation preserving Lie group actions and characteristic classes 1982 Haruo Suzuki
+ PDF Chat Arithmetic groups of higher 𝑄-rank cannot act on 1-manifolds 1994 Dave Witte
+ Group Actions on Aspherical A k (N)-Manifolds with Nonzero Euler Characteristics 1984 Hsu-Tung Ku
+ PDF Chat Isotopy groups 1978 Lawrence L. Larmore
+ Compact group actions and maps into aspherical manifolds 1982 Harold Donnelly
Reinhard Schultz
+ PDF Chat 𝑆𝐿(2,𝐢) actions on compact Kaehler manifolds 1983 James B. Carrell
Andrew J. Sommese
+ PDF Chat Essential maps and manifolds 1992 Jean‐FranΓ§ois Mertens
+ Group Actions on Aspherical A k (N)-Manifolds 1983 Hsu-Tung Ku
Mei-Chin Ku
+ PDF Chat Dold manifolds with $(Z\sb 2)\sp k$-action 1995 R. J. Shaker
+ Crystallographic actions on contractible algebraic manifolds 2014 Karel Dekimpe
Nansen Petrosyan
+ PDF Chat Four-Manifolds With Surface Fundamental Groups 1997 Alberto Cavicchioli
Friedrich Hegenbarth
DuΕ‘an RepovΕ‘
+ PDF Chat Involutions on Klein spaces 𝑀(𝑝,π‘ž) 1981 Paik Kee Kim
+ PDF Chat The group of 𝑃𝐿-homeomorphisms of a compact 𝑃𝐿-manifold is an 1^{𝑓}β‚‚-manifold 1974 James Keesling
David C. Wilson

Works That Cite This (0)

Action Title Year Authors