Strain modulated band gap of edge passivated armchair graphene nanoribbons

Type: Article

Publication Date: 2011-01-10

Citations: 55

DOI: https://doi.org/10.1063/1.3536481

Abstract

First principles calculations were performed to study strain effects on band gap of armchair graphene nanoribbons (AGNRs)with different edge passivation, including H, O, and OH group. The band gap of the H-passivated AGNRs shows a nearly periodic zigzag variation under strain. For O and OH passivation, the zigzag patterns are significantly shifted by a modified quantum confinement due to the edges. In addition, the band gap of the O-passivated AGNRs experiences a direct-to-indirect transition with sufficient tensile strain (~5%). The indirect gap reduces to zero with further increased strain.

Locations

  • Applied Physics Letters - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study 2012 Xihong Peng
Fu Tang
Andrew Copple
+ Energy gap and effective mass of H-passivated armchair graphene nanoribbons under uniaxial strain: Tight-binding model 2014 Benjamin O. Tayo
+ Edge Effects on the Electronic Structures of Chemically Modified Armchair Graphene Nanoribbons 2007 Hao Ren
Qunxiang Li
Haibin Su
Q. W. Shi
Jie Chen
Jinlong Yang
+ PDF Chat Edge configurational effect on band gaps in graphene nanoribbons 2015 Deepika Deepika
T. J. Dhilip Kumar
Alok Shukla
Rakesh Kumar
+ Strain Effect on Energy Gaps of Armchair Graphene Nanoribbons 2007 Lian Sun
Qunxiang Li
Hao Ren
Qihong Shi
Jinlong Yang
Jie Hou
+ PDF Chat Effective Mass versus Band Gap in Graphene Nanoribbons: Influence of H-Passivation and Uniaxial Strain 2014 Benjamin O. Tayo
+ Effective mass versus band gap in graphene nanoribbons: influence of H-passivation and uniaxial strain 2014 Benjamin O. Tayo
+ Effective mass versus band gap in graphene nanoribbons: influence of H-passivation and uniaxial strain 2014 Benjamin O. Tayo
+ Band engineering and elastic properties of strained armchair graphene nanoribbons: semiconductor vs metallic characteristics 2019 Sanjay Prabhakar
Roderick Melnik
+ First-principles study on controlling energy gap of graphene using hybrid armchair-zigzag nanostructures. 2021 Nguyen Tien Cuong
+ PDF Chat Influence of edge functionalization on electronic and optical properties of armchair phosphorene nanoribbons: a first-principles study 2020 Pritam Bhattacharyya
Rupesh Chaudhari
Naresh Alaal
Tushar Rana
Alok Shukla
+ First-principles study on controlling energy gap of graphene using hybrid armchair-zigzag nanostructures 2021 Nguyen Tien Cuong
+ I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons 2015 Santiago J. Cartamil-Bueno
S. Rodrı́guez
+ I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons 2015 Santiago J. Cartamil-Bueno
S. Rodrı́guez
+ PDF Chat <i>Ab initio</i>calculations of edge-functionalized armchair graphene nanoribbons: Structural, electronic, and vibrational effects 2011 Nils Rosenkranz
Christian Till
C. Thomsen
Janina Maultzsch
+ Band Gap of Strained Graphene Nanoribbons 2009 Yang Lu
Jing Guo
+ PDF Chat I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons 2015 Santiago J. Cartamil-Bueno
S. Rodrı́guez
+ Structure- and adatom-enriched essential properties of graphene nanoribbons 2018 Shih-Yang Lin
Ngoc Thanh Thuy Tran
Ming‐Fa Lin
+ PDF Chat Effect of edge defects on band structure of zigzag graphene nanoribbons 2018 Payal Wadhwa
Shailesh Kumar
T. J. Dhilip Kumar
Alok Shukla
Rakesh Kumar
+ PDF Chat Structure-and Adatom-Enriched Essential Properties of Graphene Nanoribbons 2018 Shih‐Yang Lin
Ngoc Thanh Thuy Tran
Sheng-Lin Chang
Wu-Pei Su
Ming-Fa Lin

Works That Cite This (8)

Action Title Year Authors
+ PDF Chat Direct observation of strain-induced orbital valence band splitting in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>HfSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> by sodium intercalation 2018 Tanachat Eknapakul
Ittipon Fongkaew
S. Siriroj
Warakorn Jindata
Sujinda Chaiyachad
Sung‐Kwan Mo
Sangeeta Thakur
L. Petaccia
H. Takagi
Sukit Limpijumnong
+ PDF Chat Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene 2014 Xihong Peng
Qun Wei
Andrew Copple
+ PDF Chat Unconventional strain-dependent conductance oscillations in pristine phosphorene 2018 S. J. Ray
M. Venkata Kamalakar
+ PDF Chat Electronic Bloch oscillation in a pristine monolayer graphene 2018 Tongyun Huang
Ruofan Chen
Tianxing Ma
Li‐Gang Wang
Hai-Qing Lin
+ PDF Chat Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions 2012 Caterina Cocchi
Deborah Prezzi
Alice Ruini
Marília Caldas
Elisa Molinari
+ PDF Chat Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study 2012 Xihong Peng
Fu Tang
Andrew Copple
+ PDF Chat Phase diagram and superlattice structures of monolayer phosphorus carbide ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">P</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> ) 2021 Xiaoyang Ma
Jun Zhou
Tong Yang
Dechun Li
Yuan Ping Feng
+ PDF Chat I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons 2015 Santiago J. Cartamil-Bueno
S. Rodrı́guez