Type: Article
Publication Date: 2014-12-16
Citations: 8
DOI: https://doi.org/10.1103/physrevd.90.112008
Using data samples of $102\times10^6$ $\Upsilon(1S)$ and $158\times10^6$ $\Upsilon(2S)$ events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays $\Upsilon(1S,2S)\rightarrow J/\psi(\psi')+X$, where $X=\eta_c$, $\chi_{cJ} (J=~0,~1,~2)$, $\eta_c(2S)$, $X(3940)$, and $X(4160)$. No significant signal is observed in the spectra of the mass recoiling against the reconstructed $J/\psi$ or $\psi'$ except for the evidence of $\chi_{c1}$ production with a significance of $4.6\sigma$ for $\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}$. The measured branching fraction $\BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1})$ is $(3.90\pm1.21(\rm stat.)\pm0.23 (\rm syst.))\times10^{-6}$. The $90\%$ confidence level upper limits on the branching fractions of the other modes having a significance of less than $3\sigma$ are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.