Prefer a chat interface with context about you and your work?
Study of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> meson via <…
Using 448 million $\ensuremath{\psi}(2S)$ events, the spin-singlet $P$-wave charmonium state ${h}_{c}(1^{1}{P}_{1})$ is studied via the $\ensuremath{\psi}(2S)\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{h}_{c}$ decay followed by the ${h}_{c}\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\eta}}_{c}$ transition. The branching fractions are measured to be ${\mathcal{B}}_{\text{Inc}}(\ensuremath{\psi}(2S)\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{h}_{c})\ifmmode\times\else\texttimes\fi{}{\mathcal{B}}_{\text{Tag}}({h}_{c}\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\eta}}_{c})=(4.2{2}_{\ensuremath{-}0.26}^{+0.27}\ifmmode\pm\else\textpm\fi{}0.19)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, ${\mathcal{B}}_{\text{Inc}}(\ensuremath{\psi}(2S)\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{h}_{c})=(7.32\ifmmode\pm\else\textpm\fi{}0.34\ifmmode\pm\else\textpm\fi{}\phantom{\rule{0ex}{0ex}}0.41)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, and ${\mathcal{B}}_{\text{Tag}}({h}_{c}\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\eta}}_{c})=(57.6{6}_{\ensuremath{-}3.50}^{+3.62}\ifmmode\pm\else\textpm\fi{}0.58)%$, where the uncertainties are statistical and systematic, respectively. The ${h}_{c}(1^{1}{P}_{1})$ mass and width are determined to be …